

EUROPEAN NEW CAR ASSESSMENT PROGRAMME

Technical Bulletin

Pedestrian CAE Models & Codes

Version 1.2

September 2013 TB 013

Title	Pedestrian CAE Models & Codes
Version	1.2
Document Number	TB013
Author	Secretariat
Date	September 2013
Related Documents	Pedestrian Testing Protocol
Status	Information
Application Date	September 2013

Pedestrian CA	E model	Pedestrian Sizes	Level of Biofidelity	References	Notes
Honda	Geometric	Baseline model	whole body	Small sedan: Kerrigan, J. R., Murphy, D. B.,	Source of human
Human FE	reconstruction derived	represent	kinematics (head, T1,	Drinkwater, D. C., Kam, C. Y., Bose, D.,	response data
model	from CT/MRI scans	anthropometry	T8, pelvis) during an	Crandall, J. R. : Kinematic Corridors for PMHS	
(Adult)	(bones, ligaments) -	close to 50th	impact against a small	Tested in Full-Scale Pedestrian Impact Tests,	
	pelvis and lower limb	percentile male;	sedan and a large	19thESV, Paper number 05-0394 (2005)	
Version		baseline model	SUV at 40 km/h	Large SUV: Kerrigan, J. R., Kam, C. Y.,	
13 th June	Articulated rigid body	can be scaled to		Drinkwater, D. C., Murphy, D. B., Bose, D.,	
2011	for upper body	any sizes of adult		Ivarsson, J., Crandall, J. R. : Kinematic	
	(lumbar and above) -	population		Comparison of the POLAR-II and PMHS in	
	neck and lumbar			Pedestrian Impact Tests with a Sport-Utility	
	divided into 7 and 5			Vehicle, IRCOBI Conference (2005)	
	segments			Kikuchi, Y., Takahashi, Y., Mori, F. : Full-Scale	Source of validation
				Validation of a Human FE Model for the Pelvis	results
				and	
				Lower Limb of a Pedestrian, SAE World	
				Congress, Paper Number 2008-01-1243 (2008)	
			Dynamic lateral	Salzar, R. S., Genovese, D., Bass, C. R., Bolton,	Source of human
			compression of pelvis	J. R., Guillemot, H., Damon, A. M., Crandall, J.	response data
			(Force-deflection at	R. : Load Path Distribution within the Pelvic	
			acetabulum and ilium	Structure under Lateral Loading, International	
			in both acetabulum	Crashworthiness Conference (2008)	
			and iliac loadings)	Takahashi, Y., Suzuki, S., Ikeda, M., Gunji, Y.:	Source of validation
				Investigation on Pedestrian Pelvis Loading	results
				Mechanisms Using Finite Element Simulations,	
				IRCOBI Conference (2010) (To be published)	
			Dynamic 3-point	Kerrigan J. R., Bhalla K. S., Madeley N. J., Funk	Source of human
			bending of lower limb	J. R., Bose D., Crandall J. R. : Experiments for	response data
			long bones in lateral-	Establishing Pedestrian-Impact Lower Limb	
			medial direction at	Injury Criteria, SAE Paper #2003-01-0895	
			mid-shaft, distal third	(2003)	
			and proximal third	Takahashi, Y., Kikuchi, Y., Mori, F., Konosu, A.	Source of validation
			-	: Advanced FE Lower Limb Model for	results
				Pedestrians,	
				18th ESV, Paper number 218 (2003)	
			Dynamic 3-point	Ivarsson, J., Lessley, D., Kerrigan, J., Bhalla, K.,	Source of human

Pedestrian CA	E model	Pedestrian Sizes	Level of Biofidelity	References	Notes
			bending of thigh and	Bose, D., Crandall, J., Kent, R. : Dynamic	response data
			leg (with flesh on) in	Response Corridors and Injury Thresholds of the	
			lateral-medial	Pedestrian Lower Extremities, IRCOBI	
			direction at mid-shaft,	Conference (2004)	
			proximal third (leg	Kikuchi, Y., Takahashi, Y., Mori, F.:	Source of validation
			only) and distal third	Development of a Finite Element Model for a	results
				Pedestrian Pelvis and Lower Limb, SAE World	
				Congress, Paper number 2006-01-0683 (2006)	
			Dynamic knee	Bose D., Sanghavi P., Kerrigan J. R., Madeley	Source of human
			ligament distraction to	N. J., Bhalla K. S., Crandall J. R. : Material	response data
			failure at different	Characterization of Ligaments using Non-	
			loading rates for	Contact Strain Measurement and Digitization,	
			MCL, LCL, ACL	International Workshop on Human Subjects for	
			(anterior and posterior	Biomechanical Research, (2002)	
			parts individually) and	Takahashi, Y., Kikuchi, Y., Mori, F., Konosu, A.	Source of validation
			PCL (anterior and	: Advanced FE Lower Limb Model for	results
			posterior parts	Pedestrians, 18th ESV, Paper number 218 (2003)	
			individually)	Van Dommelen, J. A. W., Ivarsson, B. J.,	Source of human
				Jolandan, M. M., Millington, S.A., Raut, M.,	response data
				Kerrigan, J.R.,	
				Crandall, J.R., Diduch, D.R. : Characterization	
				of the Rate-Dependent Mechanical Properties	
				and Failure of Human Knee	
				Ligament, SAE Paper number 2005-01-0293	
				(2005)	
				Kikuchi, Y., Takahashi, Y., Mori, F.:	Source of validation
				Development of a Finite Element Model for a	results
				Pedestrian Pelvis and Lower Limb, SAE World	
				Congress, Paper number 2006-01-0683 (2006)	
			Dynamic 4-point	Ivarsson, J., Lessley, D., Kerrigan, J., Bhalla, K.,	Source of human
			bending of knee joint	Bose, D., Crandall, J., Kent, R. : Dynamic	response data
			in valgus bending	Response Corridors and Injury Thresholds of the	
				Pedestrian Lower Extremities, IRCOBI	
				Conference (2004)	
				Kikuchi, Y., Takahashi, Y., Mori, F.:	Source of validation

Pedestrian CA	E model	Pedestrian Sizes	Level of Biofidelity	References	Notes
				Development of a Finite Element Model for a Pedestrian Pelvis and Lower Limb, SAE World Congress, Paper number 2006-01-0683 (2006)	results
			General	Takahashi, Y., Kikuchi, Y., Konosu, A., Ishikawa, H., <i>Development and validation of the</i> <i>finite element model for the human lower limb of</i> <i>pedestrians</i> , Stapp Car Crash journal, Vol. 44, 2000-101-SC22 (2000)	
Honda Human FE model (Child) Version 1 st April 2009	Geometric reconstruction derived from MRI scans from a 6YO child (whole- body external shape, lower limb bones and ligaments) FE model for thigh and leg; Articulated	Represent 6YO child anthropometry	Dynamic 3-point bending of child femur and child tibia in lateral-medial direction	Ouyang, J. et al.: <i>Biomechanical Character of</i> <i>Extremity Long Bones in Children and its</i> <i>significance</i> , Chinese Journal of Clinical Anatomy, Vol.21, No.6, p620-p623 (2003), (in Chinese) Ito, O., Okamoto, M., Takahashi, Y., Mori, F. : Validation of an FE Lower Limb Model for a Child Pedestrian by Means of Accident	Source of human response data Source of validation results
	Rigid Body model for pelvis and above			<i>Reconstruction</i> , SAE paper number 2008-01- 1240 (2008)	
	representing freedom of motion of spine Represent child- specific anatomical structures such as cartilaginous layers at ends of long bones		Leg fracture prediction validated against CIREN in- depth accident data by means of accident reconstruction	Ito, O., Okamoto, M., Takahashi, Y., Mori, F. : Validation of an FE Lower Limb Model for a Child Pedestrian by Means of Accident Reconstruction, SAE paper number 2008-01- 1240 (2008)	Source of validation results

Pedestrian CA	E model	Pedestrian Sizes	Level of Biofidelity	References	Notes
THUMS		AM50, AF05,	injury parameters are	T. Yasuki and Y. Yamamae, Validation of	Commercially available
		6YO, AM95	accurately predicted	Kinematics and Lower Extremity Injuries	(AM50)
Version				Estimated by Total Human Model for Safety in	Toyota in-house models
1.0, 3.0, 4.0,				SUV to Pedestrian Impact Test, Journal of	(AF05, 6YO, AM95)
Daimler				Biomechanical Science and Engineering Vol. 5	
THUMS-D				(2010), No. 4 Special Issue on Biomechanics in	
based on v3.0				Cardiovascular Systems	
				T. Maeno et al., Development of a Finite	
				Element Model of the Total Human Model for	
				Safety (THUMS) and Application to Car-	
				Pedestrian Collisions, ESV 2001	
				Watanabe, R., Miyazaki, H., Kitagawa, Y.,	
				Yasuki, T., : Research of Collision Speed	
				Dependency of Pedestrian Head and Chest	
				Injuries Using Human FE Model (THUMS	
				Version 4), 22nd ESV, Paper number 11-0043	
				(2011)	
JLR Human		child, 5th 50th	See references	HOWARD, M., THOMAS, A., KOCH, D. W.,	JLR in-house model
FE model		95th		WATSON, J. & HARDY, R.	
				(2000) Validation and Application of a Finite	
Version 8.1,				Element Pedestrian	
9.0				Humanoid Model for Use in Pedestrian Accident	
				Simulations. IRCOBI.	
				Montpellier, France, IRCOBI.	
				Developments in the simulation of real world car	
				to pedestrian accidents using a pedestrian	
				humanoid finite element modelR Hardy, J	
				Watson, M Howard - International Journal of	
				Crashworthiness, 2000.	
				HOWARD, M. S. (2002) Pedestrian Accident	
				Simulation and Protection. Technology	
				Evaluation. School of Engineering. Cranfield	
	D			University.	a 1 1 1 1 1 1 1
MADYMO	Details see references,	3yo, 6yo, 5th F,	Details see references,	MADYMO Human Models Manual, Version	Commercially available
Version 4.2,	MADYMO Human	50th M, 95th.	MADYMO Human	7.3, TNO Automotive, Delft, The Netherlands,	

Pedestrian CA	E model	Pedestrian Sizes	Level of Biofidelity	References	Notes
	Models Manual,	These models	Models Manual,	November 2010.	
	Version 7.3, TNO	result from a	Version 7.3, TNO		
	Automotive, Delft,	scalable mid-size	Automotive, Delft,		
	The Netherlands,	male pedestrian	The Netherlands,		
	November 2010	model	November 2010		
	The shafe and states	500/	Madala incast a	C Cilcustri. Development en localistation of a	IFF in harry and dat
IEE-WPIFE	Up-right pedestrian	50% male	Model aims at a	C. Silvestri - Development and validation of a	IEE in-nouse model
Model	model based on WPI	available. 5%	humanlike interaction	knee-thigh-hip LS-DYNA model of a 50th	
	study with following	female and 6 year	with the vehicle	percentile male	
Version 1.0	improvements	old child under	bumper and therefore	PhD Thesis, Worcester Polytechnic Institute,	
	1. introduction of	development	has:	April 2008	
	upper body masses		- hip- / knee-joint		
	represented by rigid		mechanics (ligaments)	C. Silvestri, M. H. Ray - Development of a	
	bodies		- tissue / ligament /	Finite Element Model of the Knee-Thigh-Hip of	
	2. more detailed knee		bone sub-structure	a 50th Percentile	
	modelling (a.		- correct	Male including Ligaments and Muscles,	
	ligaments		anthropometric	International Journal of Crashworthiness, Vol.	
	b. non-linear and		proportions	14, No. 2, pp: 215-229, 2009	
	strain-rate dependent		Rigid-body model		
	material laws with		validation according	FE-based pedestrian modelling to simulate the	
	appropriate failure		to	collision process with a car front-end	
	criteria		Madymo (c.f. J.van	Dr. Wener Bieck (IEE S.A.)	
	c. introduction of a		Hoof)	5. pedestrian protection conference, July 2010	
	simplified knee			(by Carhs & BGS	
	capsule		FE-model validation		
	3. femur and tibia soft		according to		
	tissue material		- J. Kajzer et al		
	4. femur meshed with		- J.R. Kerrigan et al		
	shell elements		- J.A.W. van		
			Dommelen et al		

Pedestrian CA	AE model	Pedestrian Sizes	Level of Biofidelity	References	Notes
PAMCRASH Version 1.0		3yo, 6yo, 5th F, 50th M, 95th. These models result from a scaleable mid-size male pedestrian model	Whole body kinematics based on articulated rigid bodies with focus on humanlike whole body kinematics and head contact times based on corridors from ref. 3 + 4	 Jason R. Kerrigan, Drew B. Murphy, D. Chris Drinkwater, Check Y. Kam, Dipan Bose, Jeff R. Crandall Kinematic Corridors for PMHS tested in full- scale Pedestrian Impact Tests University of Virginia Center for Applied Biomechanics United States Jason Kerrigan, Carlos Arregui, Jeff Crandall1 Pedestrian Head Impact Dynamics: Comparison of Dummy and PMHS in small Sedan and Large SUV Impacts University of Virginia Center for Applied Biomechanics United States European Center for Injury Prevention, Universidad de Navarra Spain SAE-Proposal J2782,2007, 'Performance Specifications for a 50th Percentile Male Pedestrian Research Dummy'. Ishikawa H., 1993 'Computer Simulation of Impact Response of the Human Body in Car- Pedestrian Accidents'. 	Available for PAMCRASH-users (development project partners from ESI).
JAMA	Coupling of the upper	Baseline model	whole body	Sugimoto, T., Yamazaki, K., First Results from	Overview
Human FE Model	body from	represent	kinematics (head,	the JAMA Human Body Model Project, 19th ESV Conference, Baper Number 05, 0201 (2005)	
Widder	and the lower body	close to 50th	spines, femur, tibia	Kamiji, K., Yamazaki, K., Development of	Source of validation
Version	from H-modelTM	percentile male;	and foot) during an	Finite Element Model of Human to Reduce	results
13^{m} June	based Honda Human	baseline model	impact against four	Injuries in Traffic Accidents, Journal of Society	
2011	Modifications were	any sizes of adult	(minicar, sedan, SUV	of Automotive Engineers of Japan 62(5), pp. 34- 39 (2008) (in Japanese)	
	made to improve	population	and minivan), only	(2000) (III supulose)	
	biofidelity and		one trajectory of		
	computational		which is published		
	stadility.		satisfactorily		
			reproduced		

Pedestrian CA	E model	Pedestrian Sizes	Level of Biofidelity	References	Notes
Nissan		50th Male, 6yo	AM50% and AC06(6-	1. Different Factors Influencing Post-crash	Accurate for HIT and
Human FE			yr-old): whole body	Pedestrian Kinematics	body contact
Model			kinematics (head,	Y. Kawabe, Murakami, C. Pal and T. Okabe,	calculation
			thoracic and lumbar	2012 SAE International	requirements as per
Version 3.0,			spines, femur, tibia	paper no. 2012-01-0271	Euro-NCAP protocol.
4.0			and foot) during an	2. Post-crash Pedestrian Head Kinematics in	Injuries not yet
			impact against	Real World Accidents Using 6-yr Old Child FE	satisfactorily verified
			different types of	Model	(refer JAMA model
			vehicles to reproduce	C. Pal, K. Yoshiko, O. Tomosaburo, Nissan	comments). Based on
			real world phenomena	Motor Company Ltd	JAMA AM50 model.
			based on PCDS	JSME-CMD symposium	
			accident data base.	Paper no. 2402	
				3. Analysis of Pedestrian Kinematics and Injury	
				Mechanism In Real World Accidents	
				Murakami, Daisuke; *Pal, Chinmoy; Kawabe,	
				Yoshiko; Okabe Tomosaburo	
				Nissan Motor Company Ltd., Japan	
				FISTIA2012	
				A Human EE Model to Estimate Head Contact	
				4. Human FE Model to Estimate Head Contact Time for Dedestrian Protection	
				C Pal O Tomosaburo Nissan Motor Company	
				I td	
				M Muthukumar S Narayanan RNTRCI	
				Paper Number 13-0376	
GM/GME		50th Male	Model aims to replace	1. Deng B et al, "Human model for real-world	
Human FE			Madymo-Multi-Body	vehicle-pedestrian impact simulations."INFATS	
Model			-Model in case of	- Proceedings of the 5th International Forum of	
			whole body	Automotive Traffic Safety, China : Hunan	
Version 8.2.1			kinematics and	University, 2007	
			contact times	2. Deng B et al, "Human model for real-world	
Version 1.0		6yo, 5 th female &		vehicle pedestrian impact simulations." Paper	

Pedestrian CA	E model	Pedestrian Sizes	Level of Biofidelity	References	Notes
		95 th male.	- Whole body	presented at the International Symposium of	
			kinematics (head, T1,	Human Modeling and Simulation in Automotive	
			pelvis, left femur and	Safety, Aschaffenburg, Germany, 2007	
			tibia) during an impact	3. Unatriou C et al, "A Finite element model of	
			against a small sedan	the lower limb for simulating pedestrian impact",	
			(1400 kg) at 40 kmph	Stapp Car Crash Journal, 49:157-181, 2005	
			- Dynamic 3-point	4. Vusirikala N, "Development of deformable	
			bending of femur in	pelvis model for motor vehicle crashes", GM	
			anterior-posterior	Internal Report, 2007	
			direction at mid-shaft	5. Vusirikala N, "Development of whole hip	
			- Dynamic 3-point	capsule ligament FE model", GM Internal	
			bending of leg (with	Report, 2008	
			flesh) in lateral-medial	6. Vusirikala N, "Estimation of pedestrian lower	
			direction at mid-calf	leg injury potential using lower extremity human	
			- 4-point bending of	body model", GM Internal Report, 2008	
			knee joint in valgus	7. Guillemot H, et al, "Pelvic behavior in side	
			bending	impact collisions: Static and dynamic tests on	
			- 3-point combined	isolated pelvic bones", SAE Paper # 98-S6-W-	
			loading test of knee-	37, 1998	
			joint	8. Stewart KJ, et al, "Spatial Distribution of Hip	
			- Quasi-static 3-point	Capsule Structural and Material Properties",	
			bending of femur,	Journal of Biomechanics, Vol 35, pp. 1491-	
			tibia and fibula in	1498, 2002.	
			anterior-posterior and	9. Kajzer J, et al, "Shearing and bending effects	
			lateral-medial	at the knee joint at low speed lateral loading",	
			directions	SAE paper No # 1999-01-0712, 1999	
			- Quasi-static tensile	10. Kajzer J, et al, "Shearing and bending effects	
			test to failure and	at the knee joint at high speed lateral loading",	
			dynamic ramp-and-	IRCOBI Conference, Germany, paper No #	
			hold tensile test for	1999-01-0712, 1999	
			the MCL		
			- Dynamic lateral		
			compression of pelvis		
			(Force-deflection at		
			acetabulum and ilium		

Pedestrian CAE model	Pedestrian Sizes	Level of Biofidelity	References	Notes
		in both acetabulum		
		and iliac loadings)		
		- Pelvis – femur hip		
		capsule ligament		
		distraction test		
		- Shearing and		
		bending effects of the		
		knee joint and low and		
		high speed lateral		
		loading		