

EUROPEAN NEW CAR ASSESSMENT PROGRAMME

Technical Bulletin

Pedestrian CAE Models & Codes

Version 1.4

June 2015 TB 013

Title	Pedestrian CAE Models & Codes
Version	1.4
Document Number	TB013
Author	Secretariat
Date	June 2015
Related Documents	Pedestrian Testing Protocol
Status	Information
Application Date	June 2015

Pedestrian CA	AE model	Pedestrian Sizes	Level of Biofidelity	References	Notes
Honda	Geometric	Baseline model	whole body	Small sedan: Kerrigan, J. R., Murphy, D. B.,	Source of human
Human FE	reconstruction derived	represent	kinematics (head, T1,	Drinkwater, D. C., Kam, C. Y., Bose, D.,	response data
model	from CT/MRI scans	anthropometry	T8, pelvis) during an	Crandall, J. R.: Kinematic Corridors for PMHS	
(Adult)	(bones, ligaments) -	close to 50th	impact against a small	Tested in Full-Scale Pedestrian Impact Tests,	
	pelvis and lower limb	percentile male;	sedan and a large	19thESV, Paper number 05-0394 (2005)	
Version		baseline model	SUV at 40 km/h	Large SUV: Kerrigan, J. R., Kam, C. Y.,	
13 th June	Articulated rigid body	can be scaled to		Drinkwater, D. C., Murphy, D. B., Bose, D.,	
2011	for upper body	any sizes of adult		Ivarsson, J., Crandall, J. R.: Kinematic	
	(lumbar and above) -	population		Comparison of the POLAR-II and PMHS in	
	neck and lumbar			Pedestrian Impact Tests with a Sport-Utility	
	divided into 7 and 5			Vehicle, IRCOBI Conference (2005)	
	segments			Kikuchi, Y., Takahashi, Y., Mori, F.: Full-Scale	Source of validation
				Validation of a Human FE Model for the Pelvis	results
				and	
				Lower Limb of a Pedestrian, SAE World	
				Congress, Paper Number 2008-01-1243 (2008)	
			Dynamic lateral	Salzar, R. S., Genovese, D., Bass, C. R., Bolton,	Source of human
			compression of pelvis	J. R., Guillemot, H., Damon, A. M., Crandall, J.	response data
			(Force-deflection at	R.: Load Path Distribution within the Pelvic	
			acetabulum and ilium	Structure under Lateral Loading, International	
			in both acetabulum	Crashworthiness Conference (2008)	
			and iliac loadings)	Takahashi, Y., Suzuki, S., Ikeda, M., Gunji, Y.:	Source of validation
				Investigation on Pedestrian Pelvis Loading	results
				Mechanisms Using Finite Element Simulations,	
				IRCOBI Conference (2010) (To be published)	
			Dynamic 3-point	Kerrigan J. R., Bhalla K. S., Madeley N. J., Funk	Source of human
			bending of lower limb	J. R., Bose D., Crandall J. R.: Experiments for	response data
			long bones in lateral-	Establishing Pedestrian-Impact Lower Limb	
			medial direction at	Injury Criteria, SAE Paper #2003-01-0895	
			mid-shaft, distal third	(2003)	
			and proximal third	Takahashi, Y., Kikuchi, Y., Mori, F., Konosu, A.	Source of validation
				: Advanced FE Lower Limb Model for	results
				Pedestrians,	
				18th ESV, Paper number 218 (2003)	

Pedestrian CAE model	Pedestrian Sizes	Level of Biofidelity	References	Notes
		Dynamic 3-point bending of thigh and leg (with flesh on) in lateral-medial direction at mid-shaft,	Ivarsson, J., Lessley, D., Kerrigan, J., Bhalla, K., Bose, D., Crandall, J., Kent, R.: Dynamic Response Corridors and Injury Thresholds of the Pedestrian Lower Extremities, IRCOBI Conference (2004)	Source of human response data
		proximal third (leg only) and distal third	Kikuchi, Y., Takahashi, Y., Mori, F.: Development of a Finite Element Model for a Pedestrian Pelvis and Lower Limb, SAE World Congress, Paper number 2006-01-0683 (2006)	Source of validation results
		Dynamic knee ligament distraction to failure at different loading rates for MCL, LCL, ACL (anterior and posterior	Bose D., Sanghavi P., Kerrigan J. R., Madeley N. J., Bhalla K. S., Crandall J. R.: Material Characterization of Ligaments using Non-Contact Strain Measurement and Digitization, International Workshop on Human Subjects for Biomechanical Research, (2002)	Source of human response data
		parts individually) and PCL (anterior and posterior parts	Takahashi, Y., Kikuchi, Y., Mori, F., Konosu, A.: Advanced FE Lower Limb Model for Pedestrians, 18th ESV, Paper number 218 (2003)	Source of validation results
		individually)	Van Dommelen, J. A. W., Ivarsson, B. J., Jolandan, M. M., Millington, S.A., Raut, M., Kerrigan, J.R., Crandall, J.R., Diduch, D.R.: Characterization of the Rate-Dependent Mechanical Properties and Failure of Human Knee Ligament, SAE Paper number 2005-01-0293 (2005)	Source of human response data
			Kikuchi, Y., Takahashi, Y., Mori, F.: Development of a Finite Element Model for a Pedestrian Pelvis and Lower Limb, SAE World Congress, Paper number 2006-01-0683 (2006)	Source of validation results
		Dynamic 4-point bending of knee joint in valgus bending	Ivarsson, J., Lessley, D., Kerrigan, J., Bhalla, K., Bose, D., Crandall, J., Kent, R.: Dynamic Response Corridors and Injury Thresholds of the Pedestrian Lower Extremities, IRCOBI Conference (2004)	Source of human response data

Pedestrian CA	AE model	Pedestrian Sizes	Level of Biofidelity	References	Notes
				Kikuchi, Y., Takahashi, Y., Mori, F.: Development of a Finite Element Model for a Pedestrian Pelvis and Lower Limb, SAE World Congress, Paper number 2006-01-0683 (2006)	Source of validation results
			General	Takahashi, Y., Kikuchi, Y., Konosu, A., Ishikawa, H., Development and validation of the finite element model for the human lower limb of pedestrians, Stapp Car Crash journal, Vol. 44, 2000-101-SC22 (2000)	
Honda Human FE model (Child) Version	Geometric reconstruction derived from MRI scans from a 6YO child (wholebody external shape, lower limb bones and	Represent 6YO child anthropometry	Dynamic 3-point bending of child femur and child tibia in lateral-medial direction	Ouyang, J. et al.: Biomechanical Character of Extremity Long Bones in Children and its significance, Chinese Journal of Clinical Anatomy, Vol.21, No.6, p620-p623 (2003), (in Chinese)	Source of human response data
1 st April 2009	ligaments) FE model for thigh and leg; Articulated Rigid Body model for pelvis and above			Ito, O., Okamoto, M., Takahashi, Y., Mori, F.: Validation of an FE Lower Limb Model for a Child Pedestrian by Means of Accident Reconstruction, SAE paper number 2008-01-1240 (2008)	Source of validation results
	representing freedom of motion of spine Represent child- specific anatomical structures such as cartilaginous layers at ends of long bones		Leg fracture prediction validated against CIREN in- depth accident data by means of accident reconstruction	Ito, O., Okamoto, M., Takahashi, Y., Mori, F.: Validation of an FE Lower Limb Model for a Child Pedestrian by Means of Accident Reconstruction, SAE paper number 2008-01-1240 (2008)	Source of validation results

Pedestrian CAE model	Pedestrian Sizes	Level of Biofidelity	References	Notes
THUMS	AM50, AF05,	injury parameters are	T. Yasuki and Y. Yamamae, Validation of	Commercially available
	6YO, AM95	accurately predicted	Kinematics and Lower Extremity Injuries	(AM50)
Version			Estimated by Total Human Model for Safety in	Toyota in-house models
1.0, 3.0, 4.0,			SUV to Pedestrian Impact Test, Journal of	(AF05, 6YO, AM95)
Daimler			Biomechanical Science and Engineering Vol. 5	
THUMS-D			(2010), No. 4 Special Issue on Biomechanics in	
based on v3.0			Cardiovascular Systems	
			T. Maeno et al., Development of a Finite	
			Element Model of the Total Human Model for	
			Safety (THUMS) and Application to Car-	
			Pedestrian Collisions, ESV 2001	
			Watanabe, R., Miyazaki, H., Kitagawa, Y.,	
			Yasuki, T.,: Research of Collision Speed	
			Dependency of Pedestrian Head and Chest	
			Injuries Using Human FE Model (THUMS	
			Version 4), 22nd ESV, Paper number 11-0043	
			(2011)	
JLR Human	child, 5th 50th	See references	HOWARD, M., THOMAS, A., KOCH, D. W.,	JLR in-house model
FE model	95th		WATSON, J. & HARDY, R.	
			(2000) Validation and Application of a Finite	
Version 8.1,			Element Pedestrian	
9.0			Humanoid Model for Use in Pedestrian Accident	
			Simulations. IRCOBI.	
			Montpellier, France, IRCOBI.	
			Developments in the simulation of real world car	
			to pedestrian accidents using a pedestrian	
			humanoid finite element modelR Hardy, J	
			Watson, M Howard - International Journal of	
			Crashworthiness, 2000.	
			HOWARD, M. S. (2002) Pedestrian Accident	
			Simulation and Protection. Technology	
			Evaluation. School of Engineering. Cranfield	
			University.	

Pedestrian CA	AE model	Pedestrian Sizes	Level of Biofidelity	References	Notes
MADYMO Version 4.2,	Details see references, MADYMO Human Models Manual, Version 7.3, TNO Automotive, Delft, The Netherlands, November 2010	3yo, 6yo, 5th F, 50th M, 95th. These models result from a scalable mid-size male pedestrian model	Details see references, MADYMO Human Models Manual, Version 7.3, TNO Automotive, Delft, The Netherlands, November 2010	MADYMO Human Models Manual, Version 7.3, TNO Automotive, Delft, The Netherlands, November 2010.	Commercially available
IEE-WPI FE Model Version 1.0	Up-right pedestrian model based on WPI study with following improvements 1. introduction of upper body masses represented by rigid bodies 2. more detailed knee modelling (a. ligaments b. non-linear and strain-rate dependent material laws with appropriate failure criteria c. introduction of a simplified knee capsule 3. femur and tibia soft tissue material 4. femur meshed with shell elements	50% male available. 5% female and 6 year old child under development	Model aims at a humanlike interaction with the vehicle bumper and therefore has: - hip- / knee-joint mechanics (ligaments) - tissue / ligament / bone sub-structure - correct anthropometric proportions Rigid-body model validation according to Madymo (c.f. J.van Hoof) FE-model validation according to - J. Kajzer et al - J.R. Kerrigan et al - J.A.W. van Dommelen et al	C. Silvestri - Development and validation of a knee-thigh-hip LS-DYNA model of a 50th percentile male PhD Thesis, Worcester Polytechnic Institute, April 2008 C. Silvestri, M. H. Ray - Development of a Finite Element Model of the Knee-Thigh-Hip of a 50th Percentile Male including Ligaments and Muscles, International Journal of Crashworthiness, Vol. 14, No. 2, pp: 215-229, 2009 FE-based pedestrian modelling to simulate the collision process with a car front-end Dr. Wener Bieck (IEE S.A.) 5. pedestrian protection conference, July 2010 (by Carhs & BGS)	IEE in-house model

Pedestrian CA	AE model	Pedestrian Sizes	Level of Biofidelity	References	Notes
PAMCRASH Version 1.0		3yo, 6yo, 5th F, 50th M, 95th. These models result from a scaleable mid-size male pedestrian model	Whole body kinematics based on articulated rigid bodies with focus on humanlike whole body kinematics and head contact times based on corridors from ref. 3 + 4	1. Jason R. Kerrigan, Drew B. Murphy, D. Chris Drinkwater, Check Y. Kam, Dipan Bose, Jeff R. Crandall Kinematic Corridors for PMHS tested in full-scale Pedestrian Impact Tests University of Virginia Center for Applied Biomechanics United States 2. Jason Kerrigan, Carlos Arregui, Jeff Crandall1 Pedestrian Head Impact Dynamics: Comparison of Dummy and PMHS in small Sedan and Large SUV Impacts University of Virginia Center for Applied Biomechanics United States European Center for Injury Prevention, Universidad de Navarra Spain 3. SAE-Proposal J2782,2007, 'Performance Specifications for a 50 th Percentile Male Pedestrian Research Dummy'. 4. Ishikawa H., 1993 'Computer Simulation of Impact Response of the Human Body in Car-Pedestrian Accidents'.	Available for PAMCRASH-users (development project partners from ESI).
JAMA Human FE Model	Coupling of the upper body from THUMSTM(Ver.1.4)	Baseline model represent anthropometry	whole body kinematics (head, thoracic and lumbar	Sugimoto, T., Yamazaki, K., First Results from the JAMA Human Body Model Project, 19th ESV Conference, Paper Number 05-0291 (2005)	Overview
Version 13 th June 2011	and the lower body from H-modelTM based Honda Human Pedestrian Model Modifications were made to improve biofidelity and computational stability.	close to 50th percentile male; baseline model can be scaled to any sizes of adult population	spines, femur, tibia and foot) during an impact against four types of vehicles (minicar, sedan, SUV and minivan), only one trajectory of which is published Injuries not yet	Kamiji, K., Yamazaki, K., Development of Finite Element Model of Human to Reduce Injuries in Traffic Accidents, Journal of Society of Automotive Engineers of Japan 62(5), pp. 34- 39 (2008) (in Japanese)	Source of validation results

Pedestrian CAE model	Pedestrian Sizes	Level of Biofidelity	References	Notes
Nissan	6yo, 50th Male,	satisfactorily reproduced AM50% and AC06(6-	Different Factors Influencing Post-crash	Accurate for HIT and
Human FE Model	5th Female and 95th Male	yr-old): whole body kinematics (head, thoracic and lumbar	Pedestrian Kinematics Y. Kawabe, Murakami, C. Pal and T. Okabe,	body contact calculation
Version 3.0, 4.0 AM95 based on JAMA and GHBMC model.		thoracic and lumbar spines, femur, tibia and foot) during an impact against different types of vehicles to reproduce real world phenomena based on PCDS accident data base. AF05: Good overall kinematics, Excellent detail pelvis injury estimation. AM95%: Good (overall kinematics) Excellent (detail lower injury estimation based on real world accident data)	2012 SAE International paper no. 2012-01-0271 2. Post-crash Pedestrian Head Kinematics in Real World Accidents Using 6-yr Old Child FE Model C. Pal, K. Yoshiko, O. Tomosaburo, Nissan Motor Company Ltd JSME-CMD symposium Paper no. 2402 3. Analysis of Pedestrian Kinematics and Injury Mechanism In Real World Accidents Murakami, Daisuke; *Pal, Chinmoy; Kawabe, Yoshiko; Okabe Tomosaburo Nissan Motor Company Ltd., Japan FISITA2012 paper no. F2012-F03-010 4. Human FE Model to Estimate Head Contact Time for Pedestrian Protection C. Pal, O. Tomosaburo, Nissan Motor Company Ltd. M. Muthukumar, S. Narayanan, RNTBCI Paper Number 13-0376 5. Estimation of Pelvis Injuries and Head Impact Time using Different Pedestrian Human FE Models Chinmoy Pal and Tomosaburo Okabe Nissan Kulothungan Vimalathithan, Jeyabharath	requirements, as per Euro NCAP protocol. Level pelvis injuries are verified with real world accident data JAMA AM50 upper body and GHBMC AM50 lower leg models are well integrated and modified to suit Euro NCAP protocol requirements.

Pedestrian CAF	E model	Pedestrian Sizes	Level of Biofidelity	References	Notes
				Manoharan, Muthukumar Muthanandam, and	
				Satheesh Narayanan RNTBCI	
				2014-01-0522 SAE2014	
				6. Effect of vehicle's front end profile on	
				pedestrian's lower extremity injury pattern in real	
				world and verification by large male FE Human	
				Model.	
				Chinmoy Pal, Tomosaburo Okabe, Munenori	
				Shinada Nissan	
				Kulothungan Vimalathithan, Jeyabharath	
				Manoharan, RNTBCI	
				2015-01-1467 SAE2015	
GM/GME		50th Male	Model aims to replace	1. Deng B et al, "Human model for real-world	
Human FE			Madymo-Multi-Body	vehicle-pedestrian impact simulations."INFATS	
Model			-Model in case of	- Proceedings of the 5th International Forum of	
			whole body	Automotive Traffic Safety, China: Hunan	
Version 8.2.1			kinematics and	University, 2007	
			contact times	2. Deng B et al, "Human model for real-world	
Version 1.0		6yo, 5 th female &		vehicle pedestrian impact simulations." Paper	
		95 th male.	- Whole body	presented at the International Symposium of	
			kinematics (head, T1,	Human Modeling and Simulation in Automotive	
			pelvis, left femur and	Safety, Aschaffenburg, Germany, 2007	
			tibia) during an impact	3. Unatriou C et al, "A Finite element model of	
			against a small sedan	the lower limb for simulating pedestrian impact",	
			(1400 kg) at 40 kmph	Stapp Car Crash Journal, 49:157-181, 2005	
			- Dynamic 3-point	4. Vusirikala N, "Development of deformable	
			bending of femur in	pelvis model for motor vehicle crashes", GM	
			anterior-posterior	Internal Report, 2007	
			direction at mid-shaft	5. Vusirikala N, "Development of whole hip	
			- Dynamic 3-point	capsule ligament FE model", GM Internal	
			bending of leg (with	Report, 2008	
			flesh) in lateral-medial	6. Vusirikala N, "Estimation of pedestrian lower	
			direction at mid-calf	leg injury potential using lower extremity human	
				body model", GM Internal Report, 2008	

Pedestrian CAE model	Pedestrian Sizes	Level of Biofidelity	References	Notes
		- 4-point bending of	7. Guillemot H, et al, "Pelvic behavior in side	
		knee joint in valgus	impact collisions: Static and dynamic tests on	
		bending	isolated pelvic bones", SAE Paper # 98-S6-W-	
		- 3-point combined	37, 1998	
		loading test of knee-	8. Stewart KJ, et al, "Spatial Distribution of Hip	
		joint	Capsule Structural and Material Properties",	
		- Quasi-static 3-point	Journal of Biomechanics, Vol 35, pp. 1491-	
		bending of femur,	1498, 2002.	
		tibia and fibula in	9. Kajzer J, et al, "Shearing and bending effects	
		anterior-posterior and	at the knee joint at low speed lateral loading",	
		lateral-medial	SAE paper No # 1999-01-0712, 1999	
		directions	10. Kajzer J, et al, "Shearing and bending effects	
		- Quasi-static tensile	at the knee joint at high speed lateral loading",	
		test to failure and	IRCOBI Conference, Germany, paper No #	
		dynamic ramp-and-	1999-01-0712, 1999	
		hold tensile test for		
		the MCL		
		- Dynamic lateral		
		compression of pelvis		
		(Force-deflection at		
		acetabulum and ilium		
		in both acetabulum		
		and iliac loadings)		
		- Pelvis – femur hip		
		capsule ligament		
		distraction test		
		- Shearing and		
		bending effects of the		
		knee joint and low and		
		high speed lateral		
		loading		