

EUROPEAN NEW CAR ASSESSMENT PROGRAMME

Technical Bulletin

Pedestrian CAE Models & Codes

Version 1.5

November 2015 TB 013

Title	Pedestrian CAE Models & Codes
Version	1.5
Document Number	TB013
Author	Secretariat
Date	November 2015
Related Documents	Pedestrian Testing Protocol
Status	Information
Application Date	November 2015

Pedestrian CA	E model	Pedestrian Sizes	Level of Biofidelity	References	Notes
Honda	Geometric	Baseline model	whole body	Small sedan: Kerrigan, J. R., Murphy, D. B.,	Source of human
Human FE	reconstruction derived	represent	kinematics (head, T1,	Drinkwater, D. C., Kam, C. Y., Bose, D.,	response data
model	from CT/MRI scans	anthropometry	T8, pelvis) during an	Crandall, J. R. : Kinematic Corridors for PMHS	
(Adult)	(bones, ligaments) -	close to 50th	impact against a small	Tested in Full-Scale Pedestrian Impact Tests,	
	pelvis and lower limb	percentile male;	sedan and a large	19thESV, Paper number 05-0394 (2005)	
Version		baseline model	SUV at 40 km/h	Large SUV: Kerrigan, J. R., Kam, C. Y.,	
13 th June	Articulated rigid body	can be scaled to		Drinkwater, D. C., Murphy, D. B., Bose, D.,	
2011	for upper body	any sizes of adult		Ivarsson, J., Crandall, J. R. : Kinematic	
	(lumbar and above) -	population		Comparison of the POLAR-II and PMHS in	
	neck and lumbar			Pedestrian Impact Tests with a Sport-Utility	
	divided into 7 and 5			Vehicle, IRCOBI Conference (2005)	
	segments			Kikuchi, Y., Takahashi, Y., Mori, F. : Full-Scale	Source of validation
				Validation of a Human FE Model for the Pelvis	results
				and	
				Lower Limb of a Pedestrian, SAE World	
				Congress, Paper Number 2008-01-1243 (2008)	
			Dynamic lateral	Salzar, R. S., Genovese, D., Bass, C. R., Bolton,	Source of human
			compression of pelvis	J. R., Guillemot, H., Damon, A. M., Crandall, J.	response data
			(Force-deflection at	R. : Load Path Distribution within the Pelvic	_
			acetabulum and ilium	Structure under Lateral Loading, International	
			in both acetabulum	Crashworthiness Conference (2008)	
			and iliac loadings)	Takahashi, Y., Suzuki, S., Ikeda, M., Gunji, Y.:	Source of validation
				Investigation on Pedestrian Pelvis Loading	results
				Mechanisms Using Finite Element Simulations,	
				IRCOBI Conference (2010) (To be published)	
			Dynamic 3-point	Kerrigan J. R., Bhalla K. S., Madeley N. J., Funk	Source of human
			bending of lower limb	J. R., Bose D., Crandall J. R. : Experiments for	response data
			long bones in lateral-	Establishing Pedestrian-Impact Lower Limb	
			medial direction at	Injury Criteria, SAE Paper #2003-01-0895	
			mid-shaft, distal third	(2003)	
			and proximal third	Takahashi, Y., Kikuchi, Y., Mori, F., Konosu, A.	Source of validation
				: Advanced FE Lower Limb Model for	results
				Pedestrians,	
				18th ESV, Paper number 218 (2003)	

Pedestrian CAE model	Pedestrian Sizes	Level of Biofidelity	References	Notes
		Dynamic 3-point bending of thigh and leg (with flesh on) in lateral-medial direction at mid-shaft.	Ivarsson, J., Lessley, D., Kerrigan, J., Bhalla, K., Bose, D., Crandall, J., Kent, R. : Dynamic Response Corridors and Injury Thresholds of the Pedestrian Lower Extremities, IRCOBI Conference (2004)	Source of human response data
		proximal third (leg only) and distal third	Kikuchi, Y., Takahashi, Y., Mori, F. : Development of a Finite Element Model for a Pedestrian Pelvis and Lower Limb, SAE World Congress, Paper number 2006-01-0683 (2006)	Source of validation results
		Dynamic knee ligament distraction to failure at different loading rates for MCL, LCL, ACL (anterior and posterior	Bose D., Sanghavi P., Kerrigan J. R., Madeley N. J., Bhalla K. S., Crandall J. R. : Material Characterization of Ligaments using Non- Contact Strain Measurement and Digitization, International Workshop on Human Subjects for Biomechanical Research, (2002)	Source of human response data
		parts individually) and PCL (anterior and posterior parts	Takahashi, Y., Kikuchi, Y., Mori, F., Konosu, A. : Advanced FE Lower Limb Model for Pedestrians, 18th ESV, Paper number 218 (2003)	Source of validation results
		individually)	Van Dommelen, J. A. W., Ivarsson, B. J., Jolandan, M. M., Millington, S.A., Raut, M., Kerrigan, J.R., Crandall, J.R., Diduch, D.R. : Characterization of the Rate-Dependent Mechanical Properties and Failure of Human Knee Ligament, SAE Paper number 2005-01-0293 (2005)	Source of human response data
			Kikuchi, Y., Takahashi, Y., Mori, F. : Development of a Finite Element Model for a Pedestrian Pelvis and Lower Limb, SAE World Congress, Paper number 2006-01-0683 (2006)	Source of validation results
		Dynamic 4-point bending of knee joint in valgus bending	Ivarsson, J., Lessley, D., Kerrigan, J., Bhalla, K., Bose, D., Crandall, J., Kent, R. : Dynamic Response Corridors and Injury Thresholds of the Pedestrian Lower Extremities, IRCOBI Conference (2004)	Source of human response data

Pedestrian CA	E model	Pedestrian Sizes	Level of Biofidelity	References	Notes
				Kikuchi, Y., Takahashi, Y., Mori, F. :	Source of validation
				Development of a Finite Element Model for a Dedestrien Delvis and Lower	results
				Limb SAE World Congress Deper number	
				2006 01 0683 (2006)	
			General	Takahashi V Kikuchi V Konosu A	
			Ocherai	Ishikawa H. Development and validation of the	
				finite element model for the human lower limb of	
				nedestrians Stapp Car Crash journal Vol 44	
				2000-101-SC22 (2000)	
Honda	Geometric	Represent 6YO	Dynamic 3-point	Ouyang, J. et al.: Biomechanical Character of	Source of human
Human FE	reconstruction derived	child	bending of child	Extremity Long Bones in Children and its	response data
model	from MRI scans from	anthropometry	femur and child tibia	significance,	_
(Child)	a 6YO child (whole-		in lateral-medial	Chinese Journal of Clinical Anatomy, Vol.21,	
	body external shape,		direction	No.6,	
Version	lower limb bones and			p620-p623 (2003), (in Chinese)	
1 st April 2009	ligaments)			Ito, O., Okamoto, M., Takahashi, Y., Mori, F. :	Source of validation
	FE model for thigh			Validation of an FE Lower Limb Model for a	results
	and leg; Articulated			Child Pedestrian by Means of Accident	
	Rigid Body model for			Reconstruction, SAE paper number 2008-01-	
	pelvis and above			1240 (2008)	
	representing freedom		Leg fracture	Ito, O., Okamoto, M., Takahashi, Y., Mori, F. :	Source of validation
	of motion of spine		prediction validated	Validation of an FE Lower Limb Model for a	results
	Represent child-		against CIREN in-	Child Pedestrian by Means of Accident	
	specific anatomical		depth accident data by	<i>Reconstruction</i> , SAE paper number 2008-01-	
	structures such as		means of accident	1240 (2008)	
	cartilaginous layers at		reconstruction		
	ends of long bones				

Pedestrian CA	E model	Pedestrian Sizes	Level of Biofidelity	References	Notes
THUMS		AM50, AF05,	injury parameters are	T. Yasuki and Y. Yamamae, Validation of	Commercially available
		6YO, AM95	accurately predicted	Kinematics and Lower Extremity Injuries	(AM50)
Version				Estimated by Total Human Model for Safety in	Toyota in-house models
1.0, 3.0, 4.0,				SUV to Pedestrian Impact Test, Journal of	(AF05, 6YO, AM95)
Daimler				Biomechanical Science and Engineering Vol. 5	
THUMS-D				(2010), No. 4 Special Issue on Biomechanics in	
based on v3.0				Cardiovascular Systems	
				T. Maeno et al., Development of a Finite	
				Element Model of the Total Human Model for	
				Safety (THUMS) and Application to Car-	
				Pedestrian Collisions, ESV 2001	
				Watanabe, R., Miyazaki, H., Kitagawa, Y.,	
				Yasuki, T., : Research of Collision Speed	
				Dependency of Pedestrian Head and Chest	
				Injuries Using Human FE Model (THUMS	
				Version 4), 22nd ESV, Paper number 11-0043	
				(2011)	
JLR Human		child, 5th 50th	See references	HOWARD, M., THOMAS, A., KOCH, D. W.,	JLR in-house model
FE model		95th		WATSON, J. & HARDY, R.	
				(2000) Validation and Application of a Finite	
Version 8.1,				Element Pedestrian	
9.0				Humanoid Model for Use in Pedestrian Accident	
				Simulations. IRCOBI.	
				Montpellier, France, IRCOBI.	
				Developments in the simulation of real world car	
				to pedestrian accidents using a pedestrian	
				humanoid finite element modelR Hardy, J	
				watson, NI Howard - International Journal of	
				LIOWARD M. S. (2002) Deduction A in the	
				HUWAKD, M. S. (2002) Pedestrian Accident	
				Simulation and Protection. Lechnology	
				Evaluation. School of Engineering. Cranfield	
				University.	

MADYMO MA Ma Human Ve models 7.4 version 4.2, TN 4.3, 5.0, 5.1 De Ne No IEE-WPI FE Up Model mo	ADYMO Human Iodels Manual, Version 7.3, 7.4, .4.1, 7.4.2, 7.5, 7.6, NO Automotive, Delft, The Netherlands, November 2010	3yo, 6yo, 5th F, 50th M, 95th. These models result from a scalable mid-size male pedestrian model	Details see references,	MADYMO Human Models Manual, Version 7.3, TNO Automotive, Delft, The Netherlands, November 2010. Quality report pedestrian models, 1 st October 2015, tass international.	Commercially available
IEE-WPI FE Up Model mo	p-right pedestrian	50% mala			
Version 1.0 imj 1. i upj rep boo 2. 1 mo liga b. 1 stra ma app criti c. i sim cap 3. f tiss 4. f she	audy with following mprovements . introduction of pper body masses epresented by rigid odies . more detailed knee nodelling (a. gaments . non-linear and train-rate dependent naterial laws with ppropriate failure riteria . introduction of a implified knee apsule . femur and tibia soft ssue material . femur meshed with hell elements	available. 5% female and 6 year old child under development	Model aims at a humanlike interaction with the vehicle bumper and therefore has: - hip- / knee-joint mechanics (ligaments) - tissue / ligament / bone sub-structure - correct anthropometric proportions Rigid-body model validation according to Madymo (c.f. J.van Hoof) FE-model validation according to - J. Kajzer et al - J.R. Kerrigan et al - J.A.W. van Dommelen et al	 C. Silvestri - Development and validation of a knee-thigh-hip LS-DYNA model of a 50th percentile male PhD Thesis, Worcester Polytechnic Institute, April 2008 C. Silvestri, M. H. Ray - Development of a Finite Element Model of the Knee-Thigh-Hip of a 50th Percentile Male including Ligaments and Muscles, International Journal of Crashworthiness, Vol. 14, No. 2, pp: 215-229, 2009 FE-based pedestrian modelling to simulate the collision process with a car front-end Dr. Wener Bieck (IEE S.A.) 5. pedestrian protection conference, July 2010 (by Carhs & BGS 	IEE in-house model

Pedestrian CA	AE model	Pedestrian Sizes	Level of Biofidelity	References	Notes
PAMCRASH Version 1.0		3yo, 6yo, 5th F, 50th M, 95th. These models result from a scaleable mid-size male pedestrian model	Whole body kinematics based on articulated rigid bodies with focus on humanlike whole body kinematics and head contact times based on corridors from ref. 3 + 4	 Jason R. Kerrigan, Drew B. Murphy, D. Chris Drinkwater, Check Y. Kam, Dipan Bose, Jeff R. Crandall Kinematic Corridors for PMHS tested in full- scale Pedestrian Impact Tests University of Virginia Center for Applied Biomechanics United States Jason Kerrigan, Carlos Arregui, Jeff Crandall1 Pedestrian Head Impact Dynamics: Comparison of Dummy and PMHS in small Sedan and Large SUV Impacts University of Virginia Center for Applied Biomechanics United States European Center for Injury Prevention, Universidad de Navarra Spain SAE-Proposal J2782,2007, 'Performance Specifications for a 50th Percentile Male Pedestrian Research Dummy'. Ishikawa H., 1993 'Computer Simulation of Impact Response of the Human Body in Car- Pedestrian Accidents'. 	Available for PAMCRASH-users (development project partners from ESI).
JAMA Human FE	Coupling of the upper body from	Baseline model represent	whole body kinematics (head,	Sugimoto, T., Yamazaki, K., First Results from the JAMA Human Body Model Project, 19th	Overview
Model	THUMSTM(Ver.1.4)	anthropometry	thoracic and lumbar	ESV Conference, Paper Number 05-0291 (2005)	
Version 13 th June 2011	and the lower body from H-modelTM based Honda Human Pedestrian Model Modifications were made to improve biofidelity and computational stability.	close to 50th percentile male; baseline model can be scaled to any sizes of adult population	spines, femur, tibia and foot) during an impact against four types of vehicles (minicar, sedan, SUV and minivan), only one trajectory of which is published Injuries not yet	Kamiji, K., Yamazaki, K., Development of Finite Element Model of Human to Reduce Injuries in Traffic Accidents, Journal of Society of Automotive Engineers of Japan 62(5), pp. 34- 39 (2008) (in Japanese)	Source of validation results

Pedestrian CA	AE model	Pedestrian Sizes	Level of Biofidelity	References	Notes
			satisfactorily		
			reproduced		
Nissan		6vo. 50th Male.	AM50% and AC06(6-	1. Different Factors Influencing Post-crash	Accurate for HIT and
Human FE		5th Female and	vr-old): whole body	Pedestrian Kinematics	body contact
Model		95th Male	kinematics (head.	Y. Kawabe, Murakami, C. Pal and T. Okabe,	calculation
			thoracic and lumbar	2012 SAE International	requirements, as per
Version 3.0,			spines, femur, tibia	paper no. 2012-01-0271	Euro NCAP protocol.
4.0			and foot) during an	2. Post-crash Pedestrian Head Kinematics in	Level pelvis injuries are
			impact against	Real World Accidents Using 6-yr Old Child FE	verified with real world
AM95 based			different types of	Model	accident data
on JAMA			vehicles to reproduce	C. Pal, K. Yoshiko, O. Tomosaburo, Nissan	JAMA AM50 upper
and GHBMC			real world phenomena	Motor Company Ltd	body and GHBMC
model.			based on PCDS	JSME-CMD symposium	AM50 lower leg
			accident data base.	Paper no. 2402	models are well
			AF05: Good overall	3. Analysis of Pedestrian Kinematics and Injury	integrated and modified
			kinematics,	Mechanism In Real World Accidents	to suit Euro NCAP
			Excellent detail pelvis	Murakami, Daisuke; *Pal, Chinmoy; Kawabe,	protocol requirements.
			injury estimation.	Yoshiko; Okabe Tomosaburo	
			AM95%: Good	Nissan Motor Company Ltd., Japan	
			(overall kinematics)	FISTIA2012	
			Excellent (detail	paper no. F2012-F03-010	
			ostimation based on	4. Human FE Model to Estimate Head Contact Time for Pedestrian Protection	
			real world accident	C Pal O Tomosaburo Nissan Motor Company	
			data)	Ltd	
			autu)	M. Muthukumar, S. Narayanan, RNTBCI	
				Paper Number 13-0376	
				5. Estimation of Pelvis Injuries and Head Impact	
				Time using Different Pedestrian Human FE	
				Models	
				Chinmoy Pal and Tomosaburo Okabe Nissan	
				Kulothungan Vimalathithan, Jeyabharath	

Pedestrian CA	E model	Pedestrian Sizes	Level of Biofidelity	References	Notes
				Manoharan, Muthukumar Muthanandam, and	
				Satheesh Narayanan RNTBCI	
				2014-01-0522 SAE2014	
				6. Effect of vehicle's front end profile on	
				pedestrian's lower extremity injury pattern in real	
				world and verification by large male FE Human	
				Model.	
				Chinmoy Pal, Tomosaburo Okabe, Munenori	
				Shinada Nissan	
				Kulothungan Vimalathithan, Jeyabharath	
				Manoharan, RNTBCI	
				2015-01-1467 SAE2015	
GM/GME		50th Male	Model aims to replace	1. Deng B et al, "Human model for real-world	
Human FE			Madymo-Multi-Body	vehicle-pedestrian impact simulations."INFATS	
Model			-Model in case of	- Proceedings of the 5th International Forum of	
			whole body	Automotive Traffic Safety, China : Hunan	
Version 8.2.1			kinematics and	University, 2007	
			contact times	2. Deng B et al, "Human model for real-world	
Version 1.0		6yo, 5 th female &		vehicle pedestrian impact simulations." Paper	
		95 th male.	- Whole body	presented at the International Symposium of	
			kinematics (head, T1,	Human Modeling and Simulation in Automotive	
			pelvis, left femur and	Safety, Aschaffenburg, Germany, 2007	
			tibia) during an impact	3. Unatriou C et al, "A Finite element model of	
			against a small sedan	the lower limb for simulating pedestrian impact",	
			(1400 kg) at 40 kmph	Stapp Car Crash Journal, 49:157-181, 2005	
			- Dynamic 3-point	4. Vusirikala N, "Development of deformable	
			bending of femur in	pelvis model for motor vehicle crashes", GM	
			anterior-posterior	Internal Report, 2007	
			direction at mid-shaft	5. Vusirikala N, "Development of whole hip	
			- Dynamic 3-point	capsule ligament FE model", GM Internal	
			bending of leg (with	Report, 2008	
			flesh) in lateral-medial	6. Vusirikala N, "Estimation of pedestrian lower	
			direction at mid-calf	leg injury potential using lower extremity human	
				body model", GM Internal Report, 2008	

Pedestrian CA	E model	Pedestrian Sizes	Level of Biofidelity	References	Notes
			- 4-point bending of	7. Guillemot H, et al, "Pelvic behavior in side	
			knee joint in valgus	impact collisions: Static and dynamic tests on	
			bending	isolated pelvic bones", SAE Paper # 98-S6-W-	
			- 3-point combined	37, 1998	
			loading test of knee-	8. Stewart KJ, et al, "Spatial Distribution of Hip	
			joint	Capsule Structural and Material Properties",	
			- Quasi-static 3-point	Journal of Biomechanics, Vol 35, pp. 1491-	
			bending of femur,	1498, 2002.	
			tibia and fibula in	9. Kajzer J, et al, "Shearing and bending effects	
			anterior-posterior and	at the knee joint at low speed lateral loading",	
			lateral-medial	SAE paper No # 1999-01-0712, 1999	
			directions	10. Kajzer J, et al, "Shearing and bending effects	
			- Quasi-static tensile	at the knee joint at high speed lateral loading",	
			test to failure and	IRCOBI Conference, Germany, paper No #	
			dynamic ramp-and-	1999-01-0712, 1999	
			hold tensile test for	11. Pal C, et al, "Effect of vehicle's front end	
			the MCL	profile on pedestrian's lower extremity injury	
			- Dynamic lateral	pattern in real world verification by large male	
			compression of pelvis	FE human model", SAE paper No 2015-01-	
			(Force-deflection at	1467, 2015.	
			acetabulum and ilium		
			in both acetabulum		
			and iliac loadings)		
			- Pelvis – femur hip		
			capsule ligament		
			distraction test		
			- Shearing and		
			bending effects of the		
			knee joint and low and		
			high speed lateral		
			loading		

GHBMC	Geometric	GHBMC M50-	Geometric biofidelity	Gordon et al. U.S. Army Survey of	Gordon data were used
M50-PS	reconstruction derived	PS, Average male		Anthropometry, ANSUR, 1988	to select the individual
Adult,	from external laser	subject whose			who served as the
Pedestrian,	surface scans, bony	anthropometry		Gayzik, F. S., D. P. Moreno, K. A. Danelson, C.	baseline for the M50-
Simplified.	landmark data, CT,	matched 15		McNally, K. D. Klinich and J. D. Stitzel (2012).	PS model.
	upright MRI and MRI	different		"External landmark, body surface, and volume	
Version 1.3	data of one living	measures from		data of a mid-sized male in seated and standing	Gayzik study details
	individual. Surfaces	Gordon et al.		postures." Ann Biomed Eng 40 (9): 2019-2032.	methodology for
Code: LS-	were reconstructed				standing posture
Dyna	from the laser scan				development.
	data, bones from CT.		Pelvis in lateral	Kim, Y. H., J. E. Kim and A. W. Eberhardt (2012).	Study conducted on
May 17, 2015			compression per	"A new cortical thickness mapping method with	GHBMC M50-O
			Guillemot et al. 1998	application to an in vivo finite element model."	(occupant), but same
			and Beason et al.	Comput Methods Biomech Biomed Engin.	bone mesh, material
			2003. Cortical bone		and failure properties
			mapping paper	Manual: GHBMC, Male 50 th Percentile (M50)	were ported to the
			published by Kim et	Occupant Model, Version 3.0 – Nov. 30 th , 2011	GHBMC M50-PS
			al.	1 , , , , , , , , , , , , , , , , , , ,	model.
			Mid-shaft femur,	Untaroiu, C. D., N. Yue and J. Shin (2013). "A	Study conducted on
			bending and combined	finite element model of the lower limb for	GHBMC M50-O
			compression &	simulating automotive impacts." <u>Ann Biomed</u>	(occupant), but same
			bending, per Funk et	Eng 41 (3): 513-526.	bone mesh, material
			al. 2004 and Ivarsson	GHBMC M50 Enhancement Report and	and failure properties
			et al. 2009. Data show	Quarterly Report, No. GHBMC-FBM-P2- QR1.	were ported to the
			good agreement.	10/31/2013. Appendix B, BRM COE	GHBMC M50-PS
GHBMC	Geometric	GHBMC M50-	Proximal femur,	Enhancement Reports and Results.	model.
M50-PS	reconstruction derived	PS, Average male	compression per	Yue, N, Untaroiu C.D. (2014), A Numerical	
Adult,	from external laser	subject whose	Keyak 1998. Data	Investigation on the Variation of Hip Injury	
Pedestrian,	surface scans, bony	anthropometry	show good agreement.	Tolerance with Occupant Posture during Frontal	
Simplified.	landmark data, CT,	matched 15	Knee A-P shear per	Collisions, Traffic Injury Prevention, 15(5): 513-	
	upright MRI and MRI	different	Balasubramanian et al.	522	
Version 1.3	data of one living	measures from	2004 posterior shear		
	individual. Surfaces	Gordon et al.	test of PCL. Data		
	were reconstructed		show good agreement.		

Code: LS-	from the laser scan		Midshaft lower leg.		
Dvna	data. bones from CT.		combined		
5			compression and		
May 17, 2015			bending per Untaroiu		
			et al. 2008. Data show		
			good agreement		
			Xversion internal and	L Shin Untaroju C.D. (2013) "Biomechanical	Study conducted on
			external rotation of the	and Injury Posponso of Human Foot and Anklo	GHBMC M50-0
			foot and ankle per	and injury response of Human Foot and Airkie	(occupant) but same
			Funk et al. 2000 and	under Complex Loading. J Biomech Eng/ASIVIE	bone mesh material
			2002 Data show	<u>Iransactions</u> , 135(10), 101008	and failure properties
			good agreement		were ported to the
			good agreement.	Shin, J., N. Yue and C. D. Untaroiu (2012). "A	CHRMC M50 PS
				finite element model of the foot and ankle for	model
				automotive impact applications." <u>Ann Biomed</u>	model.
				Eng 40 (12): 2519-2531.	
GHBMC	Geometric	GHBMC M50-	Standing posture	Untaroiu, C.D., Putnam J.B., Schap, J., Davis M.	Study Conducted with
M50-PS	reconstruction derived	PS, Average male	Thoracoabdominal	L., Gayzik, F. S. (2015) Development and	GHBMC M50-PS
Adult,	from external laser	subject whose	impacts per Viano et	Preliminary Validation of a 50th Percentile	components.
Pedestrian,	surface scans, bony	anthropometry	al. 1989. Impacts to	Pedestrian Finite Element Model, Proceedings	
Simplified.	landmark data, CT,	matched 15	chest, abdomen and	of 2014 ASME IDETC Conference August 17-20	
	upright MRI and MRI	different	pelvis. Data show	2015 Boston MA USA	
Version 1.3	data of one living	measures from	good agreement.		
	individual. Surfaces	Gordon et al.	Knee joint 4 point		Study Conducted with
Code: LS-	were reconstructed		bending per Bose et al.		GHBMC M50-PS
Dyna	from the laser scan		2004		components.
-	data, bones from CT.		180 degree lateral		Study Conducted with
May 17, 2015			impact to assess whole		GHBMC M50-PS
			lower limb lateral		components.
			bending and shear, per		1
			Kajzer et al. 1999		
			Vehicle leading edge		Study Conducted with
			to full pedestrian		GHBMC M50-PS full
			kinematics per		body model.
			Kerrigan et al. 2007		-
			and Untaroiu et al.		
			2006.		

			Lumbar spine validation in extension, flexion and lateral bending per Rohkmann et al. 2001		
GHBMC M95-PS and F05-PS Pedestrians, Simplified. Version 1.3 Code: LS- Dyna May 17, 2015	Geometric reconstruction derived from external laser surface scans of carefully selected individuals. Surfaces were reconstructed from laser scans. Medical images of small female and large male individuals were available for local verification.	GHBMC M95- PS, Large male subject whose anthropometry matched 15 different measures from Gordon et al. The model was developed by morphing the M50-PS model. GHBMC F05-PS, small female subject whose anthropometry matched 15 different measures from Gordon et al. The model was developed by morphing the M50-PS model.	Geometric biofidelity	 Gordon et al. U.S. Army Survey of Anthropometry, ANSUR, 1988 M95 subject data: Vavalle NA, Schoell SL, Weaver AA, Stitzel JD, Gayzik FS. (2014) The Application of Radial Basis Function Interpolation Methods in the Development of a 95th Percentile Male Seated FEA Model. <i>Stapp Car Crash J. v. 58, pp XX</i> F05 subject data: Davis ML, Allen BC, Geer CP, Stitzel JD, Gayzik FS. A multi-modality image set for the development of a 5th percentile female finite element model. <i>International Research Council on the Biomechanics of Injury</i>, IRCOBI, Sept. 2014, Berlin, Germany, ISSN: 2235-3151 	Gordon data were used to select the individual who served as the baseline for the M50- PS model. Vavalle study provides detail on the M95 subject, which was also used in occupant model development. Davis study provides data on F05 subject.

GHBMC	Geometric	GHBMC M95-	Standing posture		Study Conducted with
M95-PS and	reconstruction derived	PS, Large male	Thoracoabdominal	Untaroiu et al. Progress Report regarding the	GHBMC M95 and F05-
F05-PS	from external laser	subject whose	impacts per Viano et	Verification (Validation) of GHBMC Simplified	PS components.
Pedestrians,	surface scans of	anthropometry	al. 1989. Impacts to	Pedestrian Finite Element Model . Novemver	-
Simplified.	carefully selected	matched 15	chest, abdomen and	2014 report . February 2015 report. May 2015	
	individuals. Surfaces	different	pelvis.	report	
Version 1.3	were reconstructed	measures from	-		
	from the laser scans.	Gordon et al.			
Code: LS-	Medical images of	The model was			
Dyna	small female and large	developed by			
	male individuals were	morphing the	Knee joint 4 point		Study Conducted with
May 17, 2015	available for local	M50 model.	bending per Bose et al.		GHBMC M95 and F05-
	checks.		2004		PS components.
		GHBMC F05-PS,			
		small female	180 degree lateral		Study Conducted with
		subject whose	impact to assess whole		GHBMC M95 and F05-
		anthropometry	lower limb lateral		PS components.
		matched 15	bending and shear, per		
		different	Kajzer et al. 1999		
		measures from	Vehicle leading edge		Study Conducted with
		Gordon et al. The	to full pedestrian		GHBMC M95 and F05-
		model was	kinematics per		PS full body model.
		developed by	Kerrigan et al. 2007		
		morphing the	and Untaroiu et al.		
		M50 model.	2006.		
GHBMC	Geometric	The small female	Geometric biofidelity	Sources used in model development:	
6YO	reconstruction	model was			
Pedestrian,	followed same process	deconstructed		Reed et al. SAE Technical Paper 2001-01-1057:	
Simplified.	as above, this model	and regionally		Development of anthropometric specifications	
	was initially developed	scaled to match		for the six-vear-old OCATD.	
Version 1.3	through morphing of	anthropometry			
	the F05 model.	data of the child.		Snyder et al. 1977: Anthronometry of Infants	
Code: LS-		Medical image		Children and Youths to Age 18 for Product	
Dyna		data was used to		Safaty Design LIMTRI	
				Salety Design, UIVERI	

May 17, 2015		locally morph the mesh geometry for 6 YO.	Vehicle leading edge to full pedestrian kinematics per Kerrigan et al. 2007 and Untaroiu et al. 2006.	Untaroiu, C.D., Schap, J., Gayzik, S. (2015), A finite Element Model of a 6-year old child for simulating pedestrian impacts, AAAM 2015 Conference.	Conducted with GHBMC 6YO-PS full body model.
GHBMC M50-PS Adult, Pedestrian, Simplified. Version 1.3 Code: PAM-	Geometric reconstruction derived from external laser surface scans, bony landmark data, CT, upright MRI and MRI data of one living individual. Surfaces were reconstructed from the laser scan	GHBMC M50- PS, Average male subject whose anthropometry matched 15 different measures from Gordon et al.	Geometric biofidelity	Gordon et al. U.S. Army Survey of Anthropometry, ANSUR, 1988 Gayzik, F. S., D. P. Moreno, K. A. Danelson, C. McNally, K. D. Klinich and J. D. Stitzel (2012). "External landmark, body surface, and volume data of a mid-sized male in seated and standing postures." <u>Ann Biomed Eng</u> 40 (9): 2019-2032.	Gordon data were used to select the individual who served as the baseline for the M50- PS model. Gayzik study details methodology for standing posture
May 17, 2015	data, bones from CT.		Pelvis in lateral compression per Guillemot et al. 1998 and Beason et al. 2003. Cortical bone mapping paper published by Kim et al. Mid-shaft femur, bending and combined compression & bending, per Funk et al. 2004 and Ivarsson et al. 2009. Data show good agreement.	GHBMC Quarterly Report – Pam Crash Model Conversion (May 12 2014) User Manual: M50 Occupant Version 4.3 for PAM-CRASH, Nov. 1st, 2014 GHBMC Annual Report – Pam Crash Model Conversion (November 5 2014)	Study conducted on GHBMC M50-O (occupant), but same bone mesh, material and failure properties were ported to the GHBMC M50-PS model. Study conducted on GHBMC M50-O (occupant), but same bone mesh, material and failure properties were ported to the GHBMC M50-PS
GHBMC M50-PS	Geometric reconstruction derived from external laser surface scans, bony	GHBMC M50- PS, Average male subject whose anthropometry	Proximal femur, compression per Keyak 1998. Data show good agreement.		model.

Adult,	landmark data, CT,	matched 15	Knee A-P shear per		
Pedestrian,	upright MRI and MRI	different	Balasubramanian et al.		
Simplified.	data of one living	measures from	2004 posterior shear		
	individual. Surfaces	Gordon et al.	test of PCL. Data		
Version 1.3	were reconstructed		show good agreement.		
	from the laser scan		Midshaft lower leg,		
Code: PAM-	data, bones from CT.		combined		
Crash			compression and		
			bending per Untaroiu		
May 17, 2015			et al. 2008. Data		
			show good agreement.		
			Xversion, internal and	GHBMC Annual Report – Pam Crash Model	Study conducted on
			external rotation of the	Conversion (November 5 2014)	GHBMC M50-O
			foot and ankle per		(occupant), but same
			Funk et al. 2000 and		bone mesh, material
			2002. Data show		and failure properties
			good agreement.		were ported to the
					GHBMC M50-PS
					model.
GHBMC	Geometric	GHBMC M50-	Standing posture	GHBMC Quarterly Report – Pam Crash Model	Study Conducted with
M50-PS	reconstruction derived	PS, Average male	Thoracoabdominal	Conversion (May 11 2015)	GHBMC M50-PS
Adult,	from external laser	subject whose	impacts per Viano et		components.
Pedestrian,	surface scans, bony	anthropometry	al. 1989. Impacts to		
Simplified.	landmark data, CT,	matched 15	chest, abdomen and		
	upright MRI and MRI	different	pelvis. Data show		
Version 1.3	data of one living	measures from	good agreement.		
	individual. Surfaces	Gordon et al.	Knee joint 4 point		Study Conducted with
Code: PAM-	were reconstructed		bending per Bose et		GHBMC M50-PS
Crash	from the laser scan		al. 2004		components.
	data, bones from CT.		180 degree lateral		Study Conducted with
May 17, 2015			impact to assess whole		GHBMC M50-PS
			lower limb lateral		components.
			bending and shear, per		
			Kajzer et al. 1999		

Vehicle leading edge	Study Conducted with
to full pedestrian	GHBMC M50-PS full
kinematics per	body model.
Kerrigan et al. 2007	
and Untaroiu et al.	
2006.	
Lumbar spine	
validation in	
extension, flexion	
and lateral bending	
per Rohkmann et al.	
2001	

GHBMC M95-PS and F05-PS Pedestrians, Simplified. Version 1.3 Code: PAM- Crash May 17, 2015	Geometric reconstruction derived from external laser surface scans of carefully selected individuals. Surfaces were reconstructed from laser scans. Medical images of small female and large male individuals were available for local verification.	GHBMC M95- PS, Large male subject whose anthropometry matched 15 different measures from Gordon et al. The model was developed by morphing the M50-PS model. GHBMC F05-PS, small female subject whose anthropometry matched 15 different measures from Gordon et al. The model was developed by morphing the M50-PS model	Geometric biofidelity	 Gordon et al. U.S. Army Survey of Anthropometry, ANSUR, 1988 M95 subject data: Vavalle NA, Schoell SL, Weaver AA, Stitzel JD, Gayzik FS. (2014) The Application of Radial Basis Function Interpolation Methods in the Development of a 95th Percentile Male Seated FEA Model. <i>Stapp Car Crash J. v. 58, pp XX</i> F05 subject data: Davis ML, Allen BC, Geer CP, Stitzel JD, Gayzik FS. A multi-modality image set for the development of a 5th percentile female finite element model. <i>International Research Council on the Biomechanics of Injury</i>, IRCOBI, Sept. 2014, Berlin, Germany, ISSN: 2235-3151 	Gordon data were used to select the individual who served as the baseline for the M50- PS model. Vavalle study provides detail on the M95 subject, which was also used in occupant model development. Davis study provides data on F05 subject.
GHBMC M05 PS and	Geometric	GHBMC M95- PS Larga mala	Standing posture	GHBMC Quarterly Report – Pam Crash Model	Study Conducted with
F05-PS	from external laser	subject whose	impacts per Viano et	Conversion (way 11 2013)	PS components.
Pedestrians,	surface scans of	anthropometry	al. 1989. Impacts to		- ~ · · · · · · · · · · · · · · · · · ·
Simplified.	carefully selected	matched 15	chest, abdomen and		
	individuals. Surfaces	different	pelvis.		
Version 1.3	were reconstructed	measures from			
	from the laser scans.	Gordon et al. The			
Code: PAM-	Medical images of	model was			
Crash	small female and large	developed by			

	male individuals were	morphing the	Knee joint 4 point		Study Conducted with
May 17, 2015	available for local	M50 model.	bending per Bose et		GHBMC M95 and F05-
	checks.		al. 2004		PS components.
		GHBMC F05-PS,			
		small female	180 degree lateral		Study Conducted with
		subject whose	impact to assess whole		GHBMC M95 and F05-
		anthropometry	lower limb lateral		PS components.
		matched 15	bending and shear, per		
		different	Kajzer et al. 1999		
		measures from	Vehicle leading edge		Study Conducted with
		Gordon et al. The	to full pedestrian		GHBMC M95 and F05-
		model was	kinematics per		PS full body model.
		developed by	Kerrigan et al. 2007		_
		morphing the	and Untaroiu et al.		
		M50 model.	2006.		
GHBMC	Geometric	The small female	Geometric biofidelity	Sources used in model development:	
6YO	reconstruction	model was			
Pedestrian,	followed same process	deconstructed and		Reed et al. SAE Technical Paper 2001-01-1057:	
Simplified.	as above, this model	regionally scaled		Development of anthropometric specifications	
	was initially	to match		for the six-vear-old OCATD.	
Version 1.3	developed through	anthropometry			
	morphing of the F05	data of the child.		Snyder et al. 1977: Anthronometry of Infants	
Code: PAM-	model.	Medical image		Childron, and Vouths to Ago 18 for Product	
Crash		data was used to		Safaty Design LIMTRI	
		locally morph the	Vahiala laadina adaa	CUDMC Quarterly Depart Dam Grash Madel	Conducted with
May 17, 2015		mesh geometry	venicle leading edge	GHBMC Quarterly Report – Pam Crash Model	CUDMC (VO DS full
		for 6 YO.	to full pedestrian	Conversion (August 2015, scheduled)	GHBINIC OY U-PS TUIL
			kinematics per		body model.
			Kerrigan et al. 2007		
			and Untaroiu et al.		
			2006.		