## EURO

## EUROPEAN NEW CAR ASSESSMENT PROGRAMME (Euro NCAP)



TEST PROTOCOL - AEB/LSS VRU systems

Implementation 2023

Version 4.3
November 2022

Copyright 2022 ©Euro NCAP - This work is the intellectual property of Euro NCAP. Permission is granted for this material to be shared for non-commercial, educational purposes, provided that this copyright statement appears on the reproduced materials and notice is given that the copying is by permission of Euro NCAP. To disseminate otherwise or to republish requires written permission from Euro NCAP.

# EUROPEAN NEW CAR ASSESSMENT PROGRAMME (Euro NCAP) 

## TEST PROTOCOL - AEB VRU SYSTEMS

Table of Contents

1 INTRODUCTION ..... 1
2 DEFINITIONS ..... 2
2.1 General .....  2
2.2 Test Scenarios ..... 4
3 REFERENCE SYSTEM. ..... 7
3.1 Convention ..... 7
3.2 VUT longitudinal path error ..... 8
3.3 VUT Lateral Path Error ..... 8
3.4 Profiles for impact speed determination ..... 9
4 MEASURING EQUIPMENT. ..... 12
4.2 Measurements and Variables ..... 12
4.3 Measuring Equipment ..... 14
4.4 Data Filtering ..... 14
5 EURO NCAP VULNERABLE ROAD USER TARGETS ..... 15
5.1 Specification ..... 15
6 TEST CONDITIONS ..... 16
6.1 Test Track ..... 16
6.2 Weather Conditions. ..... 17
6.3 Surroundings ..... 18
6.4 VUT Preparation ..... 19
7 TEST PROCEDURE ..... 22
7.1 VUT Pre-test Conditioning ..... 22
7.2 Car-to-Pedestrian Scenarios. ..... 23
7.3 Car-to-Bicyclist Scenarios ..... 30
7.4 Car-to-Motorcyclist Scenarios ..... 36
7.5 Test Conduct ..... 43
7.6 Test Execution ..... 44
ANNEX A OBSTRUCTION DIMENSIONS ..... 48
A. 1 Smaller obstruction vehicle ..... 48
A. 2 Larger obstruction vehicle ..... 48
ANNEX B TESTING AT LOW AMBIENT LIGHTING CONDITIONS ..... 49
B. 1 Illumination Situation ..... 49
B. 2 Reference EN 13201 ..... 49
B. 3 Terms and definitions ..... 49
B.3.1 Derivation of parameter ..... 50
B. 4 Light condition ..... 50
B.4.1 Background illuminance ..... 51
B.4.2 Illuminance at VUT path ..... 52
B.4.3 Illuminance at EPT path ..... 53
B.4.4 Measurement tolerances ..... 54
B. 5 Test Equipment ..... 55
B.5.1 General requirement ..... 55
B.5.2 Glaring. ..... 55
B.5.3 Constant illumination function ..... 55
B.5.4 Colour temperature ..... 55
B.5.5 Mounting device ..... 55
B.5.6 Free Space (F) ..... 55
B.5.7 Test setup ..... 56
B.5.8 EPT position. ..... 59
B. 6 Example Test Equipment. ..... 60
Lamp type ..... 60
B.6.1 Requirement test setup adjustment. ..... 60
B.6.2 Longitudinal inclination of lamp ..... 62
B.6.3 Orientation of lamp ..... 63
B.6.4 Example solutions ..... 64
B.6.5 Example mounting devices ..... 65
Towerlight TF5.5 ..... 65
B. 7 Measurement ..... 66
B.7.1 Measurement setting. ..... 66
B.7.2 Example measurement grid ..... 67
B.7.3 Example measurement tools ..... 68
B.7.4 Measurement documentation ..... 69
ANNEX C BRAKE APPLICATION PROCEDURE ..... 70
C. 1 Definitions ..... 70
C. 2 Measurements ..... 70
C. 4 Brake Application Profile ..... 71
ANNEX D Emergency Steering Support. ..... 72

## INTRODUCTION

Accidents between cars and vulnerable road users are one of the most frequent accidents happening on the roads due to driver distraction or misjudgement.

Typical accidents between cars and vulnerable road users occur at city speeds where pedestrians and cyclists cross the path of the vehicle. These types of accidents usually coincide with severe injuries and leave the driver with very little reaction time to apply the brakes.

To support the driver in avoiding when possible or mitigating such crashes, car manufactures offer avoidance technology that reacts to the situation by autonomous braking and at higher speeds may issue warnings to alert the driver. Systems that specifically look for and react to vulnerable road users like pedestrians, cyclists and motorcyclists are called AEB/LSS VRU systems.

This protocol specifies the AEB/LSS VRU test procedure for Car-to-Pedestrian, Car-to-Bicyclist and Car-to-Motorcyclist scenarios, which are part of Vulnerable Road User protection.

Note:
Active Safety scoring in VRU is conditional to the total points achieved in subsystem tests, i.e. the sum of pedestrian Headform, Upper Legform \& Lower Legform scores.

If the subsystem total test score is lower than 18 points, no points are available for AEB/LSS VRU, regardless whether the system is fitted and would achieve a good score.

DEFINITIONS

## 2.1 General

Throughout this protocol the following terms are used:
Peak Braking Coefficient (PBC) - the measure of tyre to road surface friction based on the maximum deceleration of a rolling tyre, measured using the American Society for Testing and Materials (ASTM) E1136-10 (2010) standard reference test tyre, in accordance with ASTM Method E 1337-90 (reapproved 1996), at a speed of $64.4 \mathrm{~km} / \mathrm{h}$, without water delivery. Alternatively, the method as specified in UNECE R13-H.

Autonomous Emergency Braking (AEB) - braking that is applied automatically by the vehicle in response to the detection of a likely collision to reduce the vehicle speed and potentially avoid the collision.

Forward Collision Warning (FCW) - an audio-visual warning that is provided automatically by the vehicle in response to the detection of a likely collision to alert the driver.

Autonomous Emergency Steering (AES) - steering that is applied automatically by the vehicle in response to the detection of a likely collision to steer the vehicle and potentially avoid the collision.

Emergency Steering Support (ESS) - a system that supports the driver steering input in response to the detection of a likely collision to alter the vehicle path and potentially avoid a collision.

Vehicle width - the widest point of the vehicle ignoring the rear-view mirrors, side marker lamps, tyre pressure indicators, direction indicator lamps, position lamps, flexible mud-guards and the deflected part of the tyre side-walls immediately above the point of contact with the ground.

Car-to-Pedestrian - a collision between a vehicle and an adult or child pedestrian in its path, when no braking and/or steering action is applied.

Car-to-Bicyclist - a collision between a vehicle and an adult bicyclist in its path, when no braking and/or steering is applied.

Car-to-Motorcyclist - a collision between a vehicle and a Motorcyclist in its path, when no braking and/or steering is applied.

Vehicle under test (VUT) - means the vehicle tested according to this protocol with a pre-crash collision mitigation or avoidance system on board.

Euro NCAP Pedestrian Target (EPTa) - means the adult pedestrian target used in this protocol as specified in ISO 19206-2:2018

Euro NCAP Child Target (EPTc) - means the child pedestrian target used in this protocol as specified in ISO 19206-2:2018

Euro NCAP Bicyclist Target (EBTa) - means the adult bicyclist and bike target used in this protocol as specified in ISO 19206-4:2020

Euro NCAP Motorcyclist Target (EMT) - means the Motorcyclist target used in this protocol as specified in the deliverable D2.1 of the MUSE project (Fritz and Wimmer 2019) which at time of publication is to be replaced with ISO 19206-5.

Real Motorcycle - Means a motorcyclist target that can be used in the Blind-Spot Monitoring Tests of this protocol, as an alternative to the EMT. The Real Motorcycle shall be a type approved two-wheeled motorcycle, with a maximum speed of at least $80 \mathrm{~km} / \mathrm{h}$ by design, without front fairing or windshield. It shall closely resemble the EMT (as specified in section 2.1 of deliverable D2.1 of the MUSE project), thus staying within the mean dimensions of the most registered middleweight naked motorcycles in Europe (i.e. wheelbase $>1405 \mathrm{~mm}$. and $<1445 \mathrm{~mm}$.).

Time To Collision (TTC) - means the remaining time before the VUT strikes the test target, assuming that the VUT and test target would continue to travel with the speed it is travelling.

TaEb - means the time where the AEB system activates. Activation time is determined by identifying the last data point where the filtered acceleration signal is below $-1 \mathrm{~m} / \mathrm{s}^{2}$, and then going back to the point in time where the acceleration first crossed $-0.3 \mathrm{~m} / \mathrm{s}^{2}$
$\mathbf{T}_{\text {FCW }}$ - means the time where the audible warning of the FCW starts. The starting point is determined by audible recognition.

Lane Support System (LSS) - a system that correct the vehicle heading to keep the vehicle within its driving lane and/or warns the driver

Emergency Lane Keeping (ELK) - default On heading correction that is applied automatically by the vehicle in response to the detection of the vehicle that is about to drift beyond a solid line marking, the edge of the road or into oncoming or overtaking traffic in the adjacent lane.

Vimpact - means the speed at which the profiled line around the front or rear end of the VUT coincides with the virtual box around the test targets (platform not included in the virtual box) EPTa, EPTc, EBTa and EMT as shown in the right part of the figures below.
$\mathbf{V}_{\text {rel_test }}$ - means the relative speed between the VUT and the test target (EPT, EBT or EMT) by subtracting the longitudinal velocity of the test target from that of the VUT at the start of test.
$\mathbf{V}_{\text {rel_impact }}$ - means the relative speed at which the VUT hits the test target (EPT, EBT or EMT) by subtracting the longitudinal velocity of the test target from $\mathrm{V}_{\text {impact }}$ at the time of collision.


Figure 2-1:Front end profile and EPT


Figure 2-3:Front end profile and EBT


Figure 2-2:Rear end profile and EPT


Figure 2-4:Front end profile and EMT

### 2.2 Test Scenarios

Car-to-Bicyclist Dooring Adult (CBDA) - a collision between the vehicle's door and a bicyclist traveling alongside the parked vehicle.

Car-to-Pedestrian Farside Adult 50\% (CPFA-50) - a collision in which a vehicle travels forwards towards an adult pedestrian crossing its path running from the farside and the frontal structure of the vehicle strikes the pedestrian at $50 \%$ of the vehicle's width when no braking action is applied.

Car-to-Pedestrian Nearside Adult 25\% (CPNA-25) - a collision in which a vehicle travels forwards towards an adult pedestrian crossing its path walking from the nearside and the frontal structure of the vehicle strikes the pedestrian at $25 \%$ of the vehicle's width when no braking action is applied.

Car-to-Pedestrian Nearside Adult 75\% (CPNA-75) - a collision in which a vehicle travels forwards towards an adult pedestrian crossing its path walking from the nearside and the frontal structure of the vehicle strikes the pedestrian at $75 \%$ of the vehicle's width when no braking action is applied.

Car-to-Pedestrian Nearside Child Obstructed 50\% (CPNCO-50) - a collision in which a vehicle travels forwards towards a child pedestrian crossing its path running from behind and obstruction from the nearside and the frontal structure of the vehicle strikes the pedestrian at $50 \%$ of the vehicle's width when no braking action is applied.

Car-to-Pedestrian Longitudinal Adult 25\% (CPLA-25) - a collision in which a vehicle travels forwards towards an adult pedestrian walking in the same direction in front of the vehicle where the vehicle strikes the pedestrian at $25 \%$ of the vehicle's width when no braking action is applied or an evasive steering action is initiated after an FCW.

Car-to-Pedestrian Longitudinal Adult 50\% (CPLA-50) - a collision in which a vehicle travels forwards towards an adult pedestrian walking in the same direction in front of the vehicle where the vehicle strikes the pedestrian at $50 \%$ of the vehicle's width when no braking action is applied.

Car-to-Pedestrian Turning Adult 50\% (CPTA-50) - a collision in which a vehicle turns towards an adult pedestrian crossing its path, walking across a junction (in either the same and opposite direction as the VUT, before the VUT made the turn) and the frontal structure of the vehicle strikes the pedestrian at $50 \%$ of the vehicle's width when no braking action is applied.

Car-to-Pedestrian Reverse Adult/Child moving 50\% (CPRA/Cm-50) - a collision in which a vehicle travels rearwards towards an adult or child pedestrian crossing its path walking from the nearside and the rear structure of the vehicle strikes the pedestrian at $50 \%$ of the vehicle's width when no braking action is applied.

Car-to-Pedestrian Reverse Adult/Child stationary (CPRA/Cs) - a collision in which a vehicle travels rearwards towards an adult or child pedestrian standing still and the rear structure of the vehicle strikes the pedestrian at 25,50 or $75 \%$ of the vehicle's width when no braking action is applied.

Car-to-Bicyclist Nearside Adult 50\% (CBNA-50) - a collision in which a vehicle travels forwards towards a bicyclist crossing its path cycling from the nearside and the frontal structure of the vehicle strikes the bicyclist when no braking action is applied.

Car-to-Bicyclist Nearside Adult Obstructed 50\% (CBNAO-50) - a collision in which a vehicle travels forwards towards a bicyclist crossing its path cycling from the nearside from behind an obstruction and the frontal structure of the vehicle strikes the bicyclist at $50 \%$ of the vehicle's width when no braking action is applied.

Car-to-Bicyclist Farside Adult 50\% (CBFA-50) - a collision in which a vehicle travels forwards towards a bicyclist crossing its path cycling from the farside and the frontal structure of the vehicle strikes the bicyclist at $50 \%$ of the vehicle's width when no braking action is applied.

Car-to-Bicyclist Longitudinal Adult 25\% (CBLA-25) - a collision in which a vehicle travels forwards towards a bicyclist cycling in the same direction in front of the vehicle where the vehicle would strike the cyclist at $25 \%$ of the vehicle's width when no braking action is applied or an evasive steering action is initiated after an FCW.

Car-to-Bicyclist Longitudinal Adult 50\% (CBLA-50) - a collision in which a vehicle travels forwards towards a bicyclist cycling in the same direction in front of the vehicle where the vehicle would strike the cyclist at $50 \%$ of the vehicle's width when no braking action is applied.

Car-to-Bicyclist Turning Adult $\mathbf{5 0 \%}$ (CBTA-50) - a collision in which a vehicle turns towards a bicyclist crossing its path, cycling in the opposite direction across a junction and the frontal structure of the vehicle strikes the cyclist at $50 \%$ of the vehicle's width when no braking action is applied.

Car-to-Motorcyclist Rear Stationary (CMRs) - a collision in which a vehicle travels forwards towards a motorcyclist and the front structure of the vehicle strikes the rear of the motorcycle.

Car-to-Motorcyclist Rear Braking ( $\mathbf{C M R}_{\mathbf{b}}$ ) - a collision in which a vehicle travels forwards towards a motorcyclist that is travelling at constant speed and then decelerates, and the frontal structure of the vehicle strikes the rear of the motorcycle.

Car-to-Motorcyclist Front Turn Across Path ( $\mathbf{C M F}_{\text {tap }}$ ) - a collision in which a vehicle turns across the path of an oncoming motorcyclist travelling at a constant speed, and the frontal structure of the vehicle strikes the front of the motorcycle.

Car-to-Motorcyclist Oncoming (CMoncoming) - a collision in which a vehicle drifts out of lane and into the path of a motorcyclist travelling in the opposite direction in the adjacent lane.

Car-to-Motorcyclist Overtaking (CMovertaking) - a collision in which a vehicle drifts out of lane and into the path of a motorcyclist travelling in the same direction in the adjacent lane.

## 3

## REFERENCE SYSTEM

### 3.1 Convention

3.1.1 For VUT, EPT, EBT and EMT use the convention specified in ISO 8855:1991 in which the x -axis points towards the front of the vehicle, the y -axis towards the left and the z -axis upwards (right hand system), with the origin at the most forward point on the centreline of the VUT for dynamic data measurements as shown in Figure 3-1.
3.1.2 Viewed from the origin, roll, pitch and yaw rotate clockwise around the $\mathrm{x}, \mathrm{y}$ and z axes respectively. Longitudinal refers to the component of the measurement along the x -axis, lateral the component along the y -axis and vertical the component along the z -axis.
3.1.3 This reference system should be used for both left-hand drive (LHD) and right-hand drive (RHD) vehicles tested.
3.1.4 The nearside is swapped as per LHD and RHD vehicles. Figure 3-1 shows the near and farside of the vehicle for a left hand driven (LHD) vehicle.


Figure 3-1: Coordinate system and notation (LHD \& RHD) and nearside - farside for LHD vehicle

### 3.2 VUT longitudinal path error

3.2.1 For CMFtap scenario, the VUT longitudinal path error is determined as the difference between the desired position and the actual position of the front of the VUT when measured at a single defined "stable" position of the front of the EMT during the test.

$$
\text { VUT longitudinal path error = Xvut, desired }- \text { XVUT, actual }\left(@ \mathrm{X}_{\mathrm{EMT}}\right)
$$

When the origin of the reference system is at the intended collision point, the values shown in the table below shall be used to determine the VUT longitudinal path error.

| VUT speed | EMT speed | Xvut, desired | Xemt |
| :---: | :---: | :---: | :---: |
| $10 \mathrm{~km} / \mathrm{h}$ | $30 \mathrm{~km} / \mathrm{h}$ | - 10.66 m | 33.33 m |
|  | $45 \mathrm{~km} / \mathrm{h}$ |  | 50.00 m |
|  | $60 \mathrm{~km} / \mathrm{h}$ |  | 66.66 m |
| $15 \mathrm{~km} / \mathrm{h}$ | $30 \mathrm{~km} / \mathrm{h}$ | - 16.39 m | 33.33 m |
|  | $45 \mathrm{~km} / \mathrm{h}$ |  | 50.00 m |
|  | $60 \mathrm{~km} / \mathrm{h}$ |  | 66.66 m |
| $20 \mathrm{~km} / \mathrm{h}$ | $30 \mathrm{~km} / \mathrm{h}$ | - 22.02 m | 33.33 m |
|  | $45 \mathrm{~km} / \mathrm{h}$ |  | 50.00 m |
|  | $60 \mathrm{~km} / \mathrm{h}$ |  | 66.66 m |

### 3.3 VUT Lateral Path Error

3.3.1 The lateral offset (Yvut-error) is determined as the lateral distance between the centre of the front axle of the VUT when measured in parallel to the intended path as shown in Figure 3-2.


Figure 3-2: Lateral path error

### 3.4 Profiles for impact speed determination

3.4.1 A virtual profiled line is defined around both the front end and the rear end of the VUT. This line is defined by straight line segments connecting seven points that are equally distributed over the vehicle width minus 50 mm on each side. The theoretical $\mathrm{x}, \mathrm{y}$ coordinates are provided by the OEMs and verified by the test laboratory.


Figure 3-3: Virtual profiled line around both the front end (left) and rear end (right) of the VUT
3.4.2 Around the EPT a virtual box is defined which is used to determine the impact speed. The dimensions of this virtual box are shown in Figure 3-4 below, with reference points on the hip and a virtual point where the centreline of the dummy crosses the virtual box. The scenario descriptions in 7.2 illustrate which of the reference points is used in that scenario.


Figure 3-4: Virtual box dimensions around EPTa and EPTc
3.4.3 Around the EBT a virtual box is defined which is used to determine the impact speed. The dimensions of this virtual box are shown in Figure 3-5 below, with reference points on the crank shaft, most forward point on the front wheel and most rearward point on the rear wheel. The scenario descriptions in 7.3 illustrate which of the reference points is used in that scenario.


Figure 3-5: Virtual box dimensions around EBT
3.4.4 Around the EMT a virtual box is defined which is used to determine the impact speed. The dimensions of this virtual box are shown in Figure 3-6 below with reference points on the side mid position, most forward point on the front wheel and most rearward point on the rear wheel. The scenario descriptions in 7.4 illustrate which of the reference points is used in that scenario.


EMT Impact points:

1. Front wheel
2. Front left outer edge
3. Left Side
4. Rear wheel
5. Front right outer edge

Figure 3-6: Virtual box dimensions around EMT and impact points
4.1.1 Sample and record all inertial/GPS data at a frequency of at least 100 Hz . Synchronise the VRU target data with that of the VUT using the DGPS time stamp.
4.1.2 Where assessment by video footage is permitted (CBDA only), footage must be recorded in high definition [1080p or above and $\geq 50 \mathrm{~Hz}$ ].

### 4.2 Measurements and Variables

4.2.1

Time

- $\mathbf{T}_{0,}$ time of test start. $\mathrm{T}_{0}=$ TTC 4 s except for:


## T

- CMRb: $\mathrm{T}_{0}$ is 1 s . before $\mathrm{T}_{\text {EMT_deceleration_start }}$
- Scenarios involving steering: $\mathrm{T}_{0}$ is 1 s . before $\mathrm{T}_{\text {steer }}$
- $\mathrm{T}_{\text {AEB }}$, time where AEB activates
- $\mathrm{T}_{\mathrm{FCW}}$, time where FCW activates
- $\mathrm{T}_{\text {impact }}$, time where VUT impacts the target
- $\mathrm{T}_{\text {steer }}$, time where VUT enters in curve segment
- TEMT_deceleration_start, time where EMT starts decelerating in CMRb scenario (deceleration to be reached in [1.0] seconds)
- $\mathrm{T}_{\text {door_operation, }}$, time where VUT driver door opening interface is operated
- $\mathrm{T}_{\text {open }}$, time when the door opens.
4.2.2 Time (LSS-related tests)
- $\mathrm{T}_{0}$, time where manoeuvre starts with 2 s straight path
- TLDw, time where LDW activates
- $\mathrm{T}_{\text {steer }}$, time where VUT enters in curve segment
- $\mathrm{T}_{\text {crossing }}$, time where VUT crosses the line or road edge
4.2.3 Position of the VUT during the entire test
4.2.4 Position of the EMT during the entire test
4.2.5 Position of the target during the entire test
- for crossing scenarios
- for longitudinal scenarios
4.2.6 Speed of the VUT during the entire test
- $V_{\text {impact, }}$, speed when VUT impacts the target
$T_{\text {open }}$
TEMT_deceleration_start
$\mathbf{T}_{\text {door_operation }}$
$\mathbf{T}_{0}$
$\mathrm{T}_{\text {LDW }}$
$\mathbf{T}_{\text {steer }}$
$\mathbf{T}_{\text {crossing }}$
$\mathbf{X}_{\mathrm{vut}}, \mathbf{Y}_{\mathrm{Vut}}$
$\mathbf{X}_{\text {Emt }}, \mathbf{Y}_{\text {emt }}$
$\mathbf{Y}_{\text {target }}$
$\mathbf{X}_{\text {target }}$
$\mathbf{V}_{\text {vut }}$
$\mathbf{V}_{\text {impact }}$
- $\mathrm{V}_{\text {rel_impact }}$, relative speed when VUT impacts the target
$\mathbf{V}_{\text {rel_impact }}$
4.2.7 Speed of the target during the entire test $\quad \mathbf{V}_{\text {target }}$
4.2.8 Yaw velocity of the VUT during the entire test $\dot{\boldsymbol{\Psi}}_{\text {VUT }}$
4.2.9 Yaw velocity of the target during the entire test $\dot{\boldsymbol{\Psi}}_{\text {target }}$
4.2.10 Longitudinal acceleration of the VUT during the entire test $\quad$ Avut
4.2.11 Longitudinal acceleration of the test target during the entire test $\quad \mathbf{A}_{\text {target }}$
4.2.12 Steering wheel velocity of the VUT during the entire test $\boldsymbol{\Omega}_{\text {VUT }}$


### 4.3 Measuring Equipment

4.3.1 Equip the VUT and the VRU target (where self-propelling platforms are used) with data measurement and acquisition equipment to sample and record data with an accuracy of at least:

- VUT and target speed to $0.1 \mathrm{~km} / \mathrm{h}$;
- VUT and target lateral and longitudinal position to 0.03 m ;
- VUT heading angle to $0.1^{\circ}$;
- VUT and target yaw rate to $0.1 \%$ s;
- VUT and target longitudinal acceleration to $0.1 \mathrm{~m} / \mathrm{s}^{2}$;
- VUT steering wheel velocity to $1.0 \%$.
4.3.2 To determine Xtarget at TFCW, Topen and Tdoor_operation in CBDA scenario for assessment, use of video recording (including reference markings for Xtarget) is permitted.


### 4.4 Data Filtering

4.4.1 Filter the measured data as follows:
4.4.1.1 Position and speed are not filtered and are used in their raw state.
4.4.1.2 Acceleration, yaw rate and VUT steering wheel velocity with a 12 -pole phaseless Butterworth filter with a cut off frequency of 10 Hz .

## $5.1 \quad$ Specification

5.1.1 Conduct the tests in this protocol using the Euro NCAP Pedestrian Target (EPTa and EPTc), Euro NCAP Bicyclist Target (EBT) and Euro NCAP Motorcyclist Target (EMT) dressed in a black shirt and blue trousers, as shown in Figure 5-1 below. The EPT, EBT and EMT replicate the visual, radar, LIDAR and PMD attributes of a typical pedestrian, bicyclist and motorcyclist respectively, and is impactable without causing significant damage to the VUT.


Figure 5-1: Euro NCAP VRU Targets (EPTa, EPTc, EBT and EMT)
To ensure repeatable results, the propulsion system and VRU target must meet the requirements as detailed in ISO 19206 Road vehicles - Test devices for target vehicles, vulnerable road users and other objects, for assessment of active safety functions

- Part 2:2018: Requirements for pedestrian targets (articulated targets only)
- Part 4:2018: Requirements for bicyclist targets
- Part 5 (Draft): Requirements for Motorcyclist targets (including Micro-Doppler)
5.1.2 The VRU targets are designed to work with the following types of sensors:
- Radar (24 and 76-81 GHz)
- LIDAR
- Camera
- Ultrasonic sensors

When a manufacturer believes that any of the VRU targets is not suitable for another type of sensor system used by the VUT but not listed above, the manufacturer is asked to contact the Euro NCAP Secretariat.

## 6 TEST CONDITIONS

### 6.1 Test Track

6.1.1 Conduct tests on a dry (no visible moisture on the surface), uniform, solid-paved surface with a consistent slope between level and $1 \%$. The test surface shall have a minimal peak braking coefficient (PBC) of 0.9.
6.1.2 The surface must be paved and may not contain any irregularities (e.g. large dips or cracks, manhole covers or reflective studs) that may give rise to abnormal sensor measurements within a lateral distance of 5.0 m to either side of the test path and with a longitudinal distance of 20 m ahead of the VUT when the test ends.
6.1.3 The presence of lane markings is allowed. However, testing may only be conducted in an area where typical road markings depicting a driving lane may not be parallel to the test path within 3.0 m either side. Lines or markings may cross the test path, but may not be present in the area where AEB activation and/or braking after FCW is expected.
6.1.4 Junction and Lane Markings
6.1.4.1 Some scenarios described in this document require the use of a junction, where this is the case the scenario description will illustrate the scenario on a junction as in Figure 6-1. The main approach lane where the VUT path starts, (horizontal lanes in Figure $6-1$ ) will have a width of 3.5 m . The side lane (vertical lanes in Figure 6-1) will have a width of 3.25 to 3.5 m . The lane markings on these lanes need to conform to one of the lane markings as defined in UNECE Regulation 130:

1. Dashed line starting at the same point where the radius transitions into a straight line with a width between 0.10 and 0.15 m
2. Solid line with a width between 0.10 and 0.25 m
3. Junction without any central markings


Figure 6-1: Layout of junction and the connecting lanes
(Dimensions reference centre of lane markings)

### 6.1.5 Lane Markings

6.1.5.1 Some tests described in this document require use of two different types of lane markings. These lane markings must conform to one of the lane markings as defined in UN Regulation R130 to mark a lane with a width of 3.5 m to 3.7 m when measured from the inside edge of the lane marking:

1. Dashed line with a width between 0.10 and $0.25 \mathrm{~m}(0.10$ and 0.15 m for centerlines)
2. Solid line with a width between 0.10 and 0.25 m

The lane markings should be sufficiently long to ensure that there is at least 20 m of marking remaining ahead of the vehicle after the test is complete.


Figure 6-2 Layout of the lane markings
(Dimensions reference inside edge of lane marking)

### 6.2 Weather Conditions

6.2.1 Conduct tests in dry conditions with ambient temperature above $5^{\circ} \mathrm{C}$ and below $40^{\circ} \mathrm{C}$. For night time tests, the lab may liaise with the OEM to be able to test at lower temperatures.
6.2.2 No precipitation shall be falling and horizontal visibility at ground level shall be greater than 1 km . Wind speeds shall be below $10 \mathrm{~m} / \mathrm{s}$ to minimise VRU target and VUT disturbance. In case of wind speeds above $5 \mathrm{~m} / \mathrm{s}$ during test the validity of the tests is decided by lab discretion using the OEM predicted performance.
6.2.3 For daytime testing, natural ambient illumination must be homogenous in the test area and in excess of 2000 lux for daylight testing with no strong shadows cast across the test area other than those caused by the VUT or VRU target. Ensure testing is not performed driving towards, or away from the sun when there is direct sunlight.
6.2.4 Testing at low ambient lighting conditions, night time, are specified in ANNEX B.
6.2.5 Measure and record the following parameters preferably at the commencement of every single test or at least every 30 minutes:
a) Ambient temperature in ${ }^{\circ} \mathrm{C}$;
b) Track Temperature in ${ }^{\circ} \mathrm{C}$;
c) Wind speed and direction in $\mathrm{m} / \mathrm{s}$;
d) Ambient illumination in lux.

### 6.3 Surroundings

6.3.1 Conduct testing such that there are no other vehicles, highway infrastructure (except lighting columns during the low ambient lighting condition tests), obstructions (except where detailed in the test scenario), other objects or persons protruding above the test surface, that may give rise to abnormal sensor measurements within:

- 5 m either side of the VUT test path during the full duration of the test and within a longitudinal distance 20 m ahead of the VUT when the test ends,
- a circle of 2 m radius around the VRU target, and
- the visual axis between the geometric centre of the VUT and the circle surrounding the VRU target.


Figure 6-3 Free space requirements (farside scenario only)
6.3.2 Test areas where the VUT needs to pass under overhead signs, bridges, gantries or other significant structures are not permitted.
6.3.3 The general view ahead and to either side of the test area shall comprise of a wholly plain man made or natural environment (e.g. further test surface, plain coloured fencing or hoardings, natural vegetation or sky etc.) and must not comprise any highly reflective surfaces or contain any vehicle-like silhouettes that may give rise to abnormal sensor measurements.

### 6.4 VUT Preparation

### 6.4.1 AEB, FCW and LSS System Settings

6.4.1.1 Set any driver configurable elements of the AEB, FCW and or LSS system (e.g. the timing of the collision warning or the lane keep assist if present) to the middle setting or midpoint and then next latest setting similar to the examples shown in Figure 6-4 AEB and/or FCW system setting for testing .

When the vehicle is equipped with a Driver State Monitoring (DSM) which alters the AEB, FCW and/or LSS sensitivity according to the driver's state (e.g. distracted / attentive), this system shall be deactivated before the testing commences.


Figure 6-4 AEB and/or FCW system setting for testing
6.4.2 Deployable Pedestrian/VRU Protection Systems

When the vehicle is equipped with a deployable pedestrian/VRU protection system, this system shall be deactivated before the testing commences.

### 6.4.3 Tyres

Perform the testing with new original fitment tyres of the make, model, size, speed and load rating as specified by the vehicle manufacturer. It is permitted to change the tyres which are supplied by the manufacturer or acquired at an official dealer representing the manufacturer if those tyres are identical make, model, size, speed and load rating to the original fitment. Use inflation pressures corresponding to least loading normal condition.
Run-in tyres according to the tyre conditioning procedure specified in 7.1.3. After running-in maintain the run-in tyres in the same position on the vehicle for the duration of the testing.

### 6.4.4 Wheel Alignment Measurement

The vehicle should be subject to a vehicle (in-line) geometry check to record the wheel alignment set by the OEM. This should be done with the vehicle in kerb weight.

### 6.4.5 Unladen Kerb Mass

6.4.5.1 If applicable, fill up the tank with fuel to at least $90 \%$ of the tank's capacity of fuel.
6.4.5.2 Check the oil level and top up to its maximum level if necessary. Similarly, top up the levels of all other fluids to their maximum levels if necessary.
6.4.5.3 Ensure that the vehicle has its spare wheel on board, if fitted, along with any tools supplied with the vehicle. Nothing else should be in the car.
6.4.5.4 Ensure that all tyres are inflated according to the manufacturer's instructions for the least loading condition.
6.4.5.5 Measure the front and rear axle masses and determine the total mass of the vehicle. The total mass is the 'unladen kerb mass' of the vehicle. Record this mass in the test details.
6.4.5.6 Calculate the required ballast mass, by subtracting the mass of the test driver and test equipment from the required 200 kg interior load.
6.4.6 Vehicle Preparation
6.4.6.1 Fit the on-board test equipment and instrumentation in the vehicle. Also, fit any associated cables, cabling boxes and power sources.
6.4.6.2 Place weights with a mass of the ballast mass. Any items added should be securely attached to the car.
6.4.6.3 With the driver in the vehicle, weigh the front and rear axle loads of the vehicle.
6.4.6.4 Compare these loads with the "unladen kerb mass"
6.4.6.5 The total vehicle mass shall be within $\pm 1 \%$ of the sum of the unladen kerb mass, plus 200 kg . The front/rear axle load distribution needs to be within $5 \%$ of the front $/$ rear axle load distribution of the original unladen kerb mass plus full fuel load. If the vehicle differs from the requirements given in this paragraph, items may be removed or added to the vehicle which has no influence on its performance. Any items added to increase the vehicle mass should be securely attached to the car.
6.4.6.6 Repeat paragraphs 6.4.6.3 and 6.4.6.4 until the front and rear axle loads and the total vehicle mass are within the limits set in paragraph 6.4.6.5. Care needs to be taken when adding or removing weight in order to approximate the original vehicle inertial properties as close as possible. Record the final axle loads in the test details. Record the axle weights of the VUT in the 'as tested' condition.
6.4.6.7 Verify the $\mathrm{x}-\mathrm{y}$ coordinates for the virtual front end vehicle contour given by the manufacturer. When the coordinates given are within 10 mm of those measured by the test laboratory, the coordinates as provided by the manufacturer will be used. When the coordinates are not within 10 mm , the coordinates as measured by the laboratory will be used.
6.4.6.8 For purposes of the ELK elements of this procedure, vehicle dimensions shall be represented by a two-dimensional polygon defined by the lateral and longitudinal dimensions relative to the centroid of the vehicle using the standard ISO 8855 coordinate system. The corners of the polygon are defined by the lateral and
longitudinal locations where the plane of the outside edge of each tyre makes contact with the road. This plane is defined by running a perpendicular line from the outer most edge of the tyre to the ground at the wheelbase, as illustrated in Figure 6-5.


Figure 6-5: Vehicle dimensional measurements
6.4.6.9 Requirements for Steering Robot friction levels should be checked prior to testing the ELK elements of this procedure, as detailed in the Technical Bulletin TB 038.

## 7 TEST PROCEDURE

### 7.1 VUT Pre-test Conditioning

### 7.1.1 General

7.1.1.1 A new car is used as delivered to the test laboratory.
7.1.1.2 If requested by the vehicle manufacturer, drive a maximum of 100 km on a mixture of urban and rural roads with other traffic and roadside furniture to 'calibrate' the sensor system. Avoid harsh acceleration and braking.

### 7.1.2 Brakes

7.1.2.1 Condition the vehicle's brakes in the following manner, if it has not been done before or in case the lab has not performed a 100 km of driving:

- Perform twenty stops from a speed of $56 \mathrm{~km} / \mathrm{h}$ with an average deceleration of approximately 0.5 to 0.6 g .
- Immediately following the series of $56 \mathrm{~km} / \mathrm{h}$ stops, perform three additional stops from a speed of $72 \mathrm{~km} / \mathrm{h}$, each time applying sufficient force to the pedal to operate the vehicle's antilock braking system (ABS) for the majority of each stop.
- Immediately following the series of $72 \mathrm{~km} / \mathrm{h}$ stops, drive the vehicle at a speed of approximately $72 \mathrm{~km} / \mathrm{h}$ for five minutes to cool the brakes.
7.1.3 Tyres
7.1.3.1 Condition the vehicle's tyres in the following manner to remove the mould sheen, if this has not been done before for another test or in case the lab has not performed a 100 km of driving:
- Drive around a circle of 30 m in diameter at a speed sufficient to generate a lateral acceleration of approximately 0.5 to 0.6 g for three clockwise laps followed by three anticlockwise laps.
- Immediately following the circular driving, drive four passes at $56 \mathrm{~km} / \mathrm{h}$, performing ten cycles of a sinusoidal steering input in each pass at a frequency of 1 Hz and amplitude sufficient to generate a peak lateral acceleration of approximately 0.5 to 0.6 g .
- Make the steering wheel amplitude of the final cycle of the final pass double that of the previous inputs.
7.1.3.2 In case of instability in the sinusoidal driving, reduce the amplitude of the steering input to an appropriately safe level and continue the four passes.


### 7.1.4 AEB/FCW \& LSS System Check

7.1.4.1 Before any testing begins, perform a maximum of ten runs at the lowest test speed the system is supposed to work, to ensure proper functioning of the system.

### 7.2 Car-to-Pedestrian Scenarios

The performance of the system is assessed in different scenarios. For AEB Pedestrian the scenarios are considered in these sections:

|  | CPFA | CPNA | CPNCO | CPLA |  | CPTA |  |  |  | CPRA/CPRC |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Section | 7.2.1 | 7.2.2 | 7.2.3 | 7.2.4 |  | 7.2.5 |  |  |  | 7.2.6 |  |
| Type of test | AEB |  |  | AEB | FCW/ESS | AEB |  |  |  | AEB |  |
| VUT speed [km/h] | 10-60 |  |  | 20-60 | 50-80 | 10,15,20 |  | 10 |  | 4,8 |  |
| VUT direction | Forward |  |  | Forward |  | Farside turn |  | Nearside turn |  | Rearward |  |
| Target speed [km/h] | 8 | 5 |  | 5 | 5 | 5 |  |  |  | 0 | 5 |
| Target direction | Coming from Farside | Coming from Nearside |  | Forward |  | Coming from Opposite direction | Coming from Same direction | Coming from Opposite direction | Coming from Same direction | Standing, Direction facing selected by lab | Coming from nearside |
| Impact location [\%] | 50 | 25,75* | 50 | 50 | 25 | 50 |  |  |  | 25,50,75 | 50 |
| Dummy Articulation | Yes - as per test speed |  |  | Yes |  | Yes |  |  |  | Articulated dummy in 'off' position | Yes |
| Lighting condition | Day/Night |  |  | Day/Night |  | Day |  |  |  | Day |  |
| Vehicle lights (night) | Low beam |  |  | High beam |  | N/A |  |  |  | N/A |  |
| Streetlights (night) | Streetlights |  |  | No streetlights |  | N/A |  |  |  | N/A |  |

*For the CPNA-75 scenario, an additional test is performed during both day and night-time as part of the prerequisite verification at a test speed of $20 \mathrm{~km} / \mathrm{h}$ and with an EPTa speed of $3 \mathrm{~km} / \mathrm{h}$.
7.2.1 Car-to-Pedestrian Farside Adult


Figure 7-1: CPFA-50 scenario, Adult running from Farside

### 7.2.2 Car-to-Pedestrian Nearside Adult



Figure 7-2: CPNA-25 \& CPNA-75 scenarios, Walking Adult from Nearside


Figure 7-3: CPNCO-50 scenario, Running Child from Nearside from Obstruction (Annex A)

### 7.2.4 Car-to-Pedestrian Longitudinal Adult



Figure 7-4: CPLA scenario, Longitudinal walking Adult

### 7.2.5 Car-to-Pedestrian Turning Adult

For the CPTA scenarios, for the VUT assume an initial straight-line path followed by a turn (clothoid, fixed radius and clothoid as specified in section 7.2.5.1), followed again by a straight line, hereby known as the test path.
These tests are conducted without the use of the turn signals.
The VUT will follow a straight-line path in the approach lane which will be 1.75 m from the centre of the centre dashed lane marking of the VUT lane.

The 4 different scenarios of CPTA are represented below: f for farside turn, n for nearside turn, s for same direction, o for opposite direction

Axes
AA - Trajectory of pedestrian dummy H-point
BB - Axis of centerline of Vehicle under Test

Distances
E - Dummy H-point, start to $50 \%$-impact
G - Dummy acceleration distance (walking)
Point
K - Impact position for $50 \%$ near-side scenario


Figure 7-5: CPTAfs scenario - VUT left turn, pedestrian crossing from farside


```
Axes
AA - Trajectory of pedestrian dummy H-point
BB - Axis of centerline of Vehicle under Test
```


## Distances

```
E - Dummy H-point, start to 50\%-impact G - Dummy acceleration distance (walking)
```


## Point

```
K - Impact position for 50\% near-side scenario
```



Figure 7-6 CPTAfo scenario - VUT left turn, pedestrian crossing from nearside


## Axes

AA - Trajectory of pedestrian dummy H-point BB - Axis of centerline of Vehicle under Test

## Distances

E - Dummy H-point, start to 50\%-impact
G - Dummy acceleration distance (walking)

Point
K - Impact position for 50\% near-side scenario


Figure 7-7 CPTAno scenario - VUT right turn, pedestrian crossing from farside


```
Axes
AA - Trajectory of pedestrian dummy H-point
BB - Axis of centerline of Vehicle under Test
Distances
E - Dummy H-point, start to 50%-impact
G - Dummy acceleration distance (walking)
Point
K - Impact position for 50% near-side scenario
K - Impact position for 50\% near-side scenario
```



Figure 7-8 CPTAns scenario - VUT right turn, pedestrian crossing from nearside
7.2.5.1 For CPTA, CBTA and CMFtap, the following parameters should be used to create the test paths.


| Test speed | Part 1 (clothoid) |  |  | Part 2 (constant radius) |  |  | Part 3 (clothoid) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Start Radius R1 [m] | End Radius R2 <br> [m] | Angle $\alpha$ [deg] | Start Radius R2 [m] | End Radius R2 <br> [m] | Angle $\beta$ [deg] | Start Radius R2 [m] | End Radius R1 [m] | Angle $\alpha$ [deg] |
| $10 \mathrm{~km} / \mathrm{h}$ to Farside | 1500 | 9.00 | 20.62 | 9.00 | 9.00 | 48.76 | 9.00 | 1500 | 20.62 |
| $15 \mathrm{~km} / \mathrm{h}$ to Farside | 1500 | 11.75 | 20.93 | 11.75 | 11.75 | 48.14 | 11.75 | 1500 | 20.93 |
| $20 \mathrm{~km} / \mathrm{h}$ to Farside | 1500 | 14.75 | 21.79 | 14.75 | 14.75 | 46.42 | 14.75 | 1500 | 21.79 |
| $10 \mathrm{~km} / \mathrm{h}$ to Nearside | 1500 | 8.00 | 22.85 | 8.00 | 8.00 | 44.30 | 8.00 | 1500 | 22.85 |

Version 4.3

### 7.2.6 Car-to-Pedestrian Reverse Adult/Child

In the Car-to-Pedestrian Reverse scenario, a combination of the EPTa and EPTc is used to ensure robust performance. The following table shows which of the pedestrian targets is used in the different speed and overlap combinations.

| Speed | Overlap | CPRA/Cs | CPRA/Cm |
| :--- | :---: | :---: | :---: |
| $4 \mathrm{~km} / \mathrm{h}$ | $25 \%$ | EPTc |  |
|  | $50 \%$ | EPTa | EPTa |
|  | $75 \%$ | EPTc |  |
| $8 \mathrm{~km} / \mathrm{h}$ | $25 \%$ | EPTa | EPTc |
|  | $50 \%$ | EPTc |  |

7.2.6.1 Where the dummy is stationary (CPRA/Cs), the dummy should be used in its resting position with the articulation being switched off (i.e. not the static dummy posture as defined in ISO 19206-2).


Figure 7-9: CPRA/CPRC scenario, Pedestrian from Nearside (left) and Stationary (right)

### 7.3 Car-to-Bicyclist Scenarios

For AEB Bicyclist the scenarios are considered in these sections:

|  | CBFA | CBNA |  | CBLA |  | CBTA |  | CBDA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Paragraph | 7.3.1 | 7.3.2 \& 7.3.3 |  | 7.3.4 |  | 7.3.5 |  | 7.3.6 |
| Type of test | AEB | AEB |  | AEB | FCW/ESS | AEB |  |  |
| VUT speed [km/h] | 10-60 | 10-60 |  | 25-60 | 50-80 | 10,15,20 | 10 | 0 |
| VUT direction | Forward | Forward |  | Forward |  | Farside turn | Nearside turn | Stationary |
| Obstruction | No | No | Yes | No |  | No |  | Yes |
| Target speed [km/h] | 20 | 15 | 10 | 15 | 20 |  | 15 | 15 |
| Target direction | Farside | Nearside |  | Forward |  | Opposite | direction | Forward |
| Impact location [\%] | 50 | 50 |  | 50 | 25 |  | 50 | Most rearward point of closed driver door |
| Lighting condition | Day | Day |  | Day |  |  | ay | Day |

### 7.3.1 Car-to-Bicyclist Farside Adult



Figure 7-10: CBFA scenario, Bicyclist from Farside


Figure 7-11: CBNA scenario, Bicyclist from Nearside

### 7.3.3 Car-to-Bicyclist Nearside Adult Obstructed



Figure 7-12: CBNAO scenario, Bicyclist from Nearside (obstructed)
7.3.4 Car-to-Bicyclist Longitudinal Adult


Figure 7-13: CBLA scenarios, Longitudinal Bicyclist (AEB left \& FCW right)
Note: the reflected acceleration distances $Q$ and $R$ are meant to suit the limited usable length of a belt-driven carrier platform. If a self-propelled carrier platform is used for the execution of CBLA, the acceleration distances $Q$ and $R$ can be increased according to the acceleration capabilities of the platform carrier.

### 7.3.5 Car-to-Bicyclist Turning Adult

7.3.5.1 For the CBTA scenarios, for the VUT assume an initial straight-line path followed by a turn (clothoid, fixed radius and clothoid as specified in section 7.2.5.1, followed again by a straight line, hereby known as the test path. The direction indicator is applied at 1.0 s before TSteer.
7.3.5.2 The VUT will follow a straight-line path in the approach lane which will be 1.75 m from the centre of the centre dashed lane marking of the VUT lane. The EBT will follow a straight-line path which will be respectively 2.75 m (farside turn) and 5.00 m (nearside turn) from the centre of the centre dashed lane marking of the VUT lane. Steady state speed of EBT starts at 4 sec TTC.
7.3.5.2.1 The paths of the VUT and EBT will be synchronised so that the front reference point of the EBT impacts the VUT at $100 \%$ overlap, assuming no system reaction. farside turn with opposite direction -> CBTAfo


Figure 7-14: CBTAfo scenarios, Turning cycling Adult

### 7.3.6 Car-to-Bicyclist Dooring

For the CBDA scenario a bicycle is traveling in a straight line at $15 \mathrm{~km} / \mathrm{h}$ beside the parked vehicle.

In the first run, the EBT passes the parking car without operation on the door opening interface to assess the information given to the driver, where applicable.

In the second run (when applicable), the VUT driver door opening interface will be operated in a manner that for a warning system $\mathrm{T}_{\text {open }}$ and for a retention system $\mathrm{T}_{\text {door }}$ operation is achieved when the bicyclist front reference point is @ $8 \mathrm{~m} \pm[0,5] \mathrm{m}$ from the most rearward point of the driver door.


Figure 7-15: Reference point and direction relative to the VUT for dooring scenario

Door opening (manually operated):
Pull door handle or activate other door opening interface (e.g. push a button) in a manner that would open the door to exit the car in a normal non-hazard situation, while pushing the door open. Emergency exit functions are permitted where triggered by an additional action (e.g. second pull).
For CBDA, all tests shall be performed with the VUT in parking position within 60 seconds ( 180 seconds from 2025 onwards) after propulsion system turned off with the driver in unbelted state.

The widest outside structure (without mirrors) of VUT and obstruction car are aligned one meter from the path of the VRU while the central-axis of the cars are in parallel to VUT path. The distance between VUT and obstruction car is currently 2 m and is intended to be lowered from 2025 onwards.

The obstruction vehicle to be used is the smaller obstruction vehicle as defined in Annex A.1.
Axes
Axes
AA - Trajectory of bicyclist front tire
AA - Trajectory of bicyclist front tire
BB - Outside line of VUT and obstruction cars
BB - Outside line of VUT and obstruction cars
Points
Points
C - Impact point
C - Impact point
D - Door opening interface operation
D - Door opening interface operation
R - Reference Point for Bicyclist
R - Reference Point for Bicyclist


Figure 7-16 CBDA scenarios, Dooring cycling Adult

### 7.4 Car-to-Motorcyclist Scenarios

For AEB/LSS Motorcyclist the scenarios are considered in these sections:

|  | CMRs |  | CMRb | CMFtap | CMoncoming | CMovertaking |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Paragraph | 7.4 .1 |  | 7.4 .2 | 7.4 .3 | 7.4 .5 | 7.4 .6 |  |
| Type of test | AEB | FCW | AEB/FCW | AEB | LSS | LSS |  |
| VUT speed [km/h] | $10-60$ | $30-60$ | 50 | $10,15,20$ | 72 | 50 | 72 |
| Target speed [km/h] | 0 | 50 | $30,45,60$ | 72 | 60 | 80 |  |
| VUT direction | Forward | Forward | Farside turn | Forward | Forward |  |  |
| Impact location [\%] | 50 | 25 | 50 | 10 | EMT front wheel to <br> VUT rear wheel |  |  |
| Lighting condition | Day | Day | Day | Day | Day |  |  |

### 7.4.1 Car-to-Motorcyclist Rear stationary

The CMRs scenario will be performed with $5 \mathrm{~km} / \mathrm{h}$ incremental steps in speed within the complete speed range and with a $50 \%$ hit-point as shown in the figure below.


Figure 7-17: CMRs scenario

The CMRb tests will be performed at a fixed speed of $50 \mathrm{~km} / \mathrm{h}$ for both VUT and EMT with $-4 \mathrm{~m} / \mathrm{s}^{2}$ EMT acceleration and 12 and 40 m headway. These tests will be performed with $25 \%$ hit-point as shown on the figure below.


Figure 7-18: CMRb scenario
For $\mathrm{CMRb}, \mathrm{T}_{0}=\mathrm{T}_{\text {EMT_deceleration_start }}-1 \mathrm{~s}$.
$\mathrm{T}_{0}$ begins 1 second before GVT starts deceleration, for tolerance monitoring purposes.The desired deceleration of the EMT shall be reached within [1.0] seconds ( $\mathrm{T} 0+2.0 \mathrm{~s}$ ) which after the EMT shall remain within $\pm[0.5] \mathrm{km} / \mathrm{h}$ of the reference speed profile, derived from the desired deceleration, until the vehicle speed equals 1 $\mathrm{km} / \mathrm{h}$.

### 7.4.3 Car-to-Motorcyclist Front turn across path

7.4.3.1 For the CMFtap scenario, for the VUT assume an initial straight-line path followed by a turn (clothoid, fixed radius and clothoid as specified in section 7.2.5.1), followed again by a straight line, hereby known as the test path. The direction indicator is applied at 1.0 s before Tsteer.
7.4.3.2 The EMT will follow a straight-line path in the lane adjacent to the VUT's initial position, in the opposite direction to the VUT. The straight-line path of the VUT and target will be 1.75 m from the centre of the centre dashed lane marking of the VUT lane.
7.4.3.3 The paths of the VUT and EMT will be synchronised so that the front edges of the vehicle meet with a lateral position that gives a $100 \%$ overlap (assuming no system reaction) of the width of the VUT. The VUT longitudinal path error shall be within $\pm$ [0.5] m when determined in accordance with section 3.2.1


Figure 7-19: CMFtap scenario VUT and EMT paths
7.4.3.4 The CMFtap scenarios are all combinations of VUT speeds of 10,15 and $20 \mathrm{~km} / \mathrm{h}$ combined with EMT speeds of 30,45 and $60 \mathrm{~km} / \mathrm{h}$.

### 7.4.4 Car to Motorcycle LSS Test Scenarios

7.4.4.1 The performance of the VUT LSS system is assessed in two scenarios that are
applicable to the Emergency Lane Keep (only when default on).
7.4.4.2 Tests in all scenarios will be performed with $0.1 \mathrm{~m} / \mathrm{s}$ incremental steps within the lateral velocities specified for the test scenarios.
7.4.4.3 For testing purposes, assume an initial straight-line path followed by a fixed radius as specified for the test scenarios, followed again by a straight line, hereby known as the test path. Control the VUT with driver inputs or using alternative control systems that can modulate the vehicle controls as necessary to perform the tests.
7.4.4.4 The vehicle manufacturer shall provide information describing the location when the closed loop path and/or speed control shall be ended so as not to interfere with the system intervention for each test. Otherwise for each lateral velocity, two calibration runs shall be performed in order to determine when the system activates. Compare steering wheel torque, vehicle speed or yaw rate of both runs and determine where there is a notable difference that identifies the location of intervention.

Run 1: Complete the required test path with the system turned OFF and measure the control parameter

Run 2: Complete the required test path with the system turned ON and measure the control parameter
7.4.4.5 Complete the tests while ending the closed loop control before system activation as defined in 7.4.4.4. In the case of calibration runs the release of steering control should occur on the test path and no less than 5 m longitudinally before the location of intervention.
7.4.4.6 When the closed loop path ends, the driver's hands or the control will remain passive on the steering wheel without applying deliberate force but reflecting the behaviour of an inattentive driver holding the steering wheel.

### 7.4.5 Car-to-Motorcyclist oncoming

7.4.5.1 For the oncoming scenario the EMT will follow a straight line path at $72 \mathrm{~km} / \mathrm{h}$ in the lane adjacent to the VUT's initial position, in the opposite direction to the VUT which also drives at $72 \mathrm{~km} / \mathrm{h}$. The straight line path of the target will be 1 m for the EMT from the centre of the centre dashed lane marking of the VUT lane.


Figure 7-20: CMoncoming vehicle scenario paths
7.4.5.2 The paths of the VUT and EMT will be synchronised so that the outermost front left impact point of the EMT's virtual box (impact point 2 in Figure 3-6: Virtual box dimensions around EMT and impact points) impacts the VUT at $10 \%$ of the width of the VUT (assuming no system reaction).


Figure 7-21: CM oncoming motorcycle impact location
7.4.5.3 The following parameters should be used to create the test paths for the tests:

| VUT@ 72km/h | Vlatvut [m/s] | R [m] | $\Psi_{\text {Vut }}\left[{ }^{\circ}\right]$ | d1 | d2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Unintentional | 0.2 | 1200 | 0.57 | 0.06 | 0.70 |
|  | 0.3 |  | 0.86 | 0.14 | 0.90 |
|  | 0.4 |  | 1.15 | 0.24 | 0.80 |
|  | 0.5 |  | 1.43 | 0.38 | 0.75 |
|  | 0.6 |  | 1.72 | 0.54 | 0.60 |

Where the lateral offset d from the lane marking:

$$
\begin{aligned}
& \mathrm{d}=\mathrm{d} 1+\mathrm{d} 2+\text { Half of the vehicle width }(\mathrm{m}) \\
& \quad \mathrm{d} 1: \text { Lateral distance travelled during curve establishing yaw angle (m) }
\end{aligned}
$$

d2: Lateral distance travelled during $\mathrm{V}_{\text {lat }}$ steady state (m)

7.4.5.4 CM oncoming tests will be performed with $0.1 \mathrm{~m} / \mathrm{s}$ incremental steps within the lateral velocity range of 0.2 to $0.6 \mathrm{~m} / \mathrm{s}$ for departures at the driver side only.

### 7.4.6 Car-to-Motorcyclist overtaking

7.4.6.1 For the overtaking scenario a EMT will follow a straight line path in the lane adjacent to the VUT's initial position at the driver side, in the same direction as the VUT. The straight line path of the target will be 1 m for the EMT from the centre of the centre dashed lane marking of the VUT line.
7.4.6.2 The paths of the VUT and EMT will be synchronised so that the outermost front right impact point of the EMT's virtual box (impact point 5 in Figure 3-6) is equal to that of the rear axle of the VUT at the impact point (assuming no system reaction).
7.4.6.3 CMovertaking tests will be performed with $0.1 \mathrm{~m} / \mathrm{s}$ incremental steps within the lateral velocity range of 0.2 to $0.6 \mathrm{~m} / \mathrm{s}$ for unintentional lane change and 0.5 to $0.7 \mathrm{~m} / \mathrm{s}$ for intentional lane changes for departures at the driver side only.
7.4.6.4 Both unintentional and intentional lane changes are tested in two situations:

- EMT @ $60 \mathrm{~km} / \mathrm{h}$ is overtaking the VUT @ $50 \mathrm{~km} / \mathrm{h}$ (relative velocity of $10 \mathrm{~km} / \mathrm{h}$ )
- EMT @ $80 \mathrm{~km} / \mathrm{h}$ is overtaking the VUT @ $72 \mathrm{~km} / \mathrm{h}$ (relative velocity of $8 \mathrm{~km} / \mathrm{h}$ )

In case where there is no platform available at the time of protocol introduction, an agreed fallback solution is to be implemented for the EMT @ $80 \mathrm{~km} / \mathrm{h}$ test:
Where the vehicle passes the $60-50 \mathrm{~km} / \mathrm{h}$ CMovertaking and the $80-72 \mathrm{~km} / \mathrm{h}$ C2C ELK overtaking test and blind-spot monitoring information or warning is issued when a real motorcycle overtakes the VUT when driving at the higher test speeds, points should also be awarded.
7.4.6.5 For both intentional and unintentional lane changes, the following parameters should be used to create the test paths. For the intentional lane change tests where the direction
indicator is applied at $1.0 \mathrm{~s} \pm 0.5 \mathrm{~s}$ before TSTEER:

| VUT@ 50km/h | Vlatvut [m/s] | R [m] | $\Psi_{\text {Vut }}\left[{ }^{\circ}\right]$ | d1 | d2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Unintentional | 0.2 | 1200 | 0.83 | 0.12 | 0.64 |
|  | 0.3 |  | 1.24 | 0.28 | 0.76 |
|  | 0.4 |  | 1.65 | 0.50 | 0.54 |
|  | 0.5 |  | 2.06 | 0.78 | 0.35 |
|  | 0.6 |  | 2.48 | 1.12 | 0.02 |
| Intentional | 0.5 | 400 | 2.06 | 0.26 | 0.74 |
|  | 0.6 |  | 2.48 | 0.37 | 0.59 |
|  | 0.7 |  | 2.89 | 0.51 | 0.51 |
| VUT@ 72km/h | Vlatvut [m/s] | R [m] | $\Psi_{\text {Vut }}\left[{ }^{\circ}\right.$ ] | d1 | d2 |
| Unintentional | 0.2 | 1200 | 0.57 | 0.06 | 0.70 |
|  | 0.3 |  | 0.86 | 0.14 | 0.90 |
|  | 0.4 |  | 1.15 | 0.24 | 0.80 |
|  | 0.5 |  | 1.43 | 0.38 | 0.75 |
|  | 0.6 |  | 1.72 | 0.54 | 0.60 |
| Intentional | 0.5 | 800 | 1.43 | 0.25 | 0.75 |
|  | 0.6 |  | 1.72 | 0.36 | 0.60 |
|  | 0.7 |  | 2.01 | 0.49 | 0.53 |

Where the lateral offset d from the lane marking:

$$
\mathrm{d}=\mathrm{d} 1+\mathrm{d} 2+\text { Half of the vehicle width }(\mathrm{m})
$$

d1: Lateral distance travelled during curve establishing yaw angle (m)
d2: Lateral distance travelled during $\mathrm{V}_{\text {lat }}$ steady state ( m )


Figure 7-22: CMovertaking scenarios

### 7.5 Test Conduct

7.5.1 Before every test run, drive the VUT around a circle of maximum diameter 30 m at a speed less than $10 \mathrm{~km} / \mathrm{h}$ for one clockwise lap followed by one anticlockwise lap, and then manoeuvre the VUT into position on the test path. If requested by the OEM an initialisation run may be included before every test run. Bring the VUT to a halt and push the brake pedal through the full extent of travel and release.
7.5.2 For vehicles with an automatic transmission select D. For vehicles with a manual transmission select the highest gear where the RPM will be at least 1500 at the test speed.
7.5.3 Perform the first test a minimum of 90 s and a maximum of 10 minutes after completing the tyre conditioning (if applicable), and subsequent tests after the same time period. If the time between consecutive tests exceeds 10 minutes perform three brake stops from $72 \mathrm{~km} / \mathrm{h}$ at approximately 0.3 g .
7.5.4 Between tests, manoeuvre the VUT at a maximum speed of $50 \mathrm{~km} / \mathrm{h}$ and avoid riding the brake pedal and harsh acceleration, braking or turning unless strictly necessary to maintain a safe testing environment.
7.5.5 For CPFA-50, CPNA-25 and CPNA-75, CPNCO-50, CPLA-50, CBNA-50, CBNAO-50, CBFA-50, and CBLA-50, based on the OEM colour prediction, the highest avoidance (Green) test speeds of each scenario and one randomly selected avoidance (Green) test speed per scenario (where applicable) will be tested according to the following colour scheme detailed in the assessment scheme section 1.3.1. If there is an impact in any of these tests, perform a test at the adjacent test speed(s) until the predicted avoidance is confirmed.
7.5.6 Perform all tests where the predicted result is Yellow, Orange or Brown. Test points that are predicted Red are excluded from testing.
7.5.7 For CBNA-50, CBNAO-50 and CBFA-50 the lowest avoidance (Green) test speed will be tested additionally.
7.5.8 In the tests above $40 \mathrm{~km} / \mathrm{h}$, stop testing when the actual speed reduction measured is less than $15 \mathrm{~km} / \mathrm{h}$.
7.5.9 For CPLA-25 and CBLA-25 FCW systems tests, based on the OEM prediction, the highest test speed of each scenario where the FCW is issued after 1.7 TTC is tested and one randomly selected test speed per scenario where the FCW is issued before 1.7 s TTC.
7.5.10 If the FCW is not issued before 1.7s TTC in any of these tests, perform tests at all remaining test speeds in the scenario in $5 \mathrm{~km} / \mathrm{h}$ increments.
7.5.11 Stop testing when the OEM predicts that the FCW is not issued before 1.7s TTC.
7.5.12 For the CPLA-25 and CBLA-25 test scenarios the OEM may choose to implement ESS as an alternative strategy to issuing an FCW before 1.7 s TTC. Where this is the case an ESS evaluation will be performed as per ANNEX D.
7.5.13 For AEB CMR systems tests, perform tests over the full test speed range per scenario, starting with the lowest test speed. When there is complete avoidance, the subsequent test speed for the next test is incremented with $10 \mathrm{~km} / \mathrm{h}$. When there is contact, first perform a test at a test speed $5 \mathrm{~km} / \mathrm{h}$ less than the test speed where contact occurred. After this test continue to perform the remainder of the tests with speed increments of $5 \mathrm{~km} / \mathrm{h}$. Stop testing when the speed reduction seen in the test is less than $5 \mathrm{~km} / \mathrm{h}$.
7.5.14 For the CMR FCW system tests, when there is complete avoidance, the subsequent test speed for the next test is incremented by $10 \mathrm{~km} / \mathrm{h}$. When there is contact, first perform a test at a test speed $5 \mathrm{~km} / \mathrm{h}$ less than the test speed where contact occurred. After this test continue to perform the remainder of the tests with speed increments of $5 \mathrm{~km} / \mathrm{h}$ by repeating section 7.5.6. In the CMR FCW scenarios, only perform tests at the test speeds where there was no avoidance in the AEB function tests, where applicable. Stop testing when the speed reduction seen in the test is less than $5 \mathrm{~km} / \mathrm{h}$.

### 7.6 Test Execution

Control the VUT with driver inputs or using alternative control systems that can modulate the vehicle controls as necessary to perform the tests within the boundary conditions as specified in 7.6.3 for the AEB tests and 7.6.6 for the LSS tests.

### 7.6.1 $\quad$ AEB tests

7.6.2 Accelerate the VUT and target to the respective test speeds where needed.
7.6.3 The test shall start at T 0 and is valid when all boundary conditions are met between T 0 and TAEB and/or TFCW:

|  | VUT | EPT | EBT | EMT |
| :--- | :---: | :---: | :---: | :---: |
| Speed | $+1.0 \mathrm{~km} / \mathrm{h}$ | $\pm 0.2 \mathrm{~km} / \mathrm{h}$ | $\pm 0.5 \mathrm{~km} / \mathrm{h}$ | $\pm 1.0 \mathrm{~km} / \mathrm{h}$ |


| Lateral deviation | $0 \pm 0.05 \mathrm{~m}$ <br> $(0 \pm 0.1 \mathrm{~m}$ for <br> CPTA and CBTA) | $0 \pm 0.05 \mathrm{~m}$ for crossing scenarios (incl. CPTA, CBTA \& CPRA) <br> $0 \pm 0.15 \mathrm{~m}$ for longitudinal scenarios (incl. CBDA) | $0 \pm[0.15] \mathrm{m}$ |  |
| :--- | :---: | :---: | :---: | :---: |
| Lateral velocity |  | $0 \pm 0.15 \mathrm{~m} / \mathrm{s}$ | $0 \pm 0.15 \mathrm{~m} / \mathrm{s}$ |  |
| Relative distance |  |  |  | $12 \mathrm{~m} / 40 \mathrm{~m} \pm 0.5 \mathrm{~m}$ |
| Yaw velocity (upto $T_{\text {STEER }}$ ) | $0 \pm 1.0 \% \mathrm{~s}$ |  |  | $0 \pm 2.0 \% / \mathrm{s}$ |
| Steering wheel velocity (upto $T_{\text {STEER }}$ ) | $0 \pm 15.0 \% \mathrm{~s}$ |  |  |  |

7.6.4 The end of a test, where the AEB function is assessed and for CMRs FCW and CMRb FCW, is considered when one of the following occurs:

- $\mathrm{V}_{\mathrm{VUT}}=0 \mathrm{~km} / \mathrm{h}$ (crossing) or $\mathrm{V}_{\mathrm{VUT}}=\mathrm{V}_{\text {target }}$ (longitudinal)
- Contact between VUT and target
- The target has left the VUT path or VUT has left the target path

For CPLA- 25 and CBLA- 25 tests where the FCW function is assessed, the end of a test is considered when one of the following occurs:

- $\mathrm{V}_{\mathrm{Vut}}=\mathrm{V}_{\text {target }}$ (longitudinal)
- $\mathrm{T}_{\mathrm{FCW}}$
- $\mathrm{TTC} \leq 1.5 \mathrm{~s}$, after which an evasive action can be started

It is at the labs discretion to select and use one of the options above to ensure a safe testing environment.
7.6.5 To avoid contact in the CMFtap scenario, the test laboratory may include an automated braking action by the robot in case the AEB system fails to intervene (sufficiently). This braking action is applied automatically when:

- The VUT reaches the latest position at which maximum braking applied to the vehicle will prevent the VUT entering the path of the Motorcyclist and no intervention from the AEB system is detected.
- Lateral separation between the VUT and EMT reaches $\leq 0.3 \mathrm{~m}$ during / after AEB intervention.
It is at the test laboratory's discretion to select and use one of the options above to ensure a safe testing environment. If the OEM feels the avoidance action is negatively affecting the performance of their vehicle, they should consult with the test laboratory and Euro NCAP secretariat.
7.6.5.1 For manual or automatic accelerator control, it needs to be assured that during automatic brake the accelerator pedal does not result in an override of the system. The accelerator pedal needs to be released when the initial test speed is reduced by $5 \mathrm{~km} / \mathrm{h}$. There shall be no operation of other driving controls during the test, e.g. clutch or brake pedal. This does not apply for the CPRA tests.
7.6.5.2 The CMRs and CMRb FCW system tests should be performed using a braking robot reacting to the warning with a delay time of 1.2 seconds as per C .4 to account for driver
reaction time.
7.6.5.3 Braking will be applied that results in a maximum brake level of $-4 \mathrm{~m} / \mathrm{s} 2-0.50 \mathrm{~m} / \mathrm{s} 2$ when applied in a non-threat situation. The particular brake profile to be applied (pedal application rate applied in 200 ms ( $\mathrm{max} .400 \mathrm{~mm} / \mathrm{s}$ ) and pedal force) shall be specified by the manufacturer. When the brake profile provided by the manufacturer results in a higher brake level than allowed, the iteration steps as described in ANNEX C will be applied to scale the brake level to $-4 \mathrm{~m} / \mathrm{s} 2-0.50 \mathrm{~m} / \mathrm{s} 2$.
7.6.5.4 If no brake profile is provided, apply default brake profile as described in ANNEX C.


### 7.6.6 LSS tests

7.6.6.1 Accelerate the VUT to $50 \mathrm{~km} / \mathrm{h}$ or $72 \mathrm{~km} / \mathrm{h}$ depending on the test scenario.
7.6.6.2 Where applicable accelerate the target vehicle to $60 \mathrm{~km} / \mathrm{h}$ or $80 \mathrm{~km} / \mathrm{h}$ depending on the test scenario, as described in chapter 7.4.
7.6.6.3 The test shall start at T 0 and is valid when all boundary conditions are met between $\mathrm{T}_{0}$ and $\mathrm{T}_{\text {Elk: }}$

|  | VUT | EMT |
| :--- | :---: | :---: |
| Speed |  | $\pm 1.0 \mathrm{~km} / \mathrm{h}$ |
| Relative speed (CMovertaking) |  | $\pm 1.0 \mathrm{~km} / \mathrm{h}$ |
| Lateral deviation | $0 \pm 0.05 \mathrm{~m}$ | $0 \pm[0.15] \mathrm{m}$ |
| Steady state lane departure lateral velocity | $\pm 0.05 \mathrm{~m} / \mathrm{s}$ |  |
| Yaw velocity (upto T ${ }_{\text {STEER }}$ for VUT) | $0 \pm 1.0 \% \mathrm{~s}$ |  |
| Steering wheel velocity (upto TSTEER |  |  |

7.6.6.4 Steer the vehicle as appropriate to achieve the lateral velocity in a smooth controlled manner and with minimal overshoot.
7.6.6.5 The end of an CMoncoming or CMovertaking test is considered as when one of the following occurs:

- The system intervenes to prevent a collision between the VUT and target vehicle
- The system has failed to intervene (sufficiently) to prevent a collision between the VUT and target vehicle. This can be assumed when one of the following occurs:
- The lateral separation between the VUT and target vehicle equal < 0.3 m in the oncoming and overtaking scenario
- No intervention is observed at a TTC $=0.8 \mathrm{~s}$ or a TTC submitted by the OEM
It is at the labs discretion to select and use one of the options above to ensure a safe testing environment.
7.6.6.6 If the test ends because the vehicle has failed to intervene (sufficiently) or if the EMT has left it's designated path by more than 0.2 m , it is recommended that the VUT and/or EMT are steered away from the impact, either manually or by reactivating the steering control of the driving robot/EMT.
7.6.6.7 The subsequent lateral velocity for the next test is incremented with $0.1 \mathrm{~m} / \mathrm{s}$.


## ANNEX A OBSTRUCTION DIMENSIONS

## A. 1 Smaller obstruction vehicle

The smaller obstruction vehicle should be of the category Small Family Car and is positioned closest to the pedestrian path. The smaller obstruction vehicle should be within the following geometrical dimensions and needs to be in a dark colour.

|  | Vehicle <br> length | Vehicle width <br> (without <br> mirrors) | Vehicle <br> height | Bonnet <br> (ength (till <br> A pillar) | BLE height |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Minimum | 4100 mm | 1700 mm | 1300 mm | 1100 mm | 650 mm |
| Maximum | 4400 mm | 1900 mm | 1500 mm | 1500 mm | 800 mm |

## A. 2 Larger obstruction vehicle

The larger obstruction vehicle should be of the category Small Off-road 4 x 4 and is positioned behind the smaller obstruction vehicle. The larger obstruction vehicle should be within the following geometrical dimensions and needs to be in a dark colour.

|  | Vehicle <br> length | Vehicle width <br> (without <br> mirrors) | Vehicle <br> height |
| :--- | :---: | :---: | :---: |
| Minimum | 4300 mm | 1750 mm | 1500 mm |
| Maximum | 4700 mm | 1900 mm | 1800 mm |

## ANNEX B TESTING AT LOW AMBIENT LIGHTING CONDITIONS

## B. 1 Illumination Situation

Based on a GIDAS hotspot analysis, this annex will describe a test condition for a night test scenario in urban situations.

## B. 2 Reference EN 13201

This European Standard defines performance requirements, which are specified as lighting classes for road lighting aiming at the visual needs of road users, and it considers environmental aspects of road lighting.

EN 13201, Road lighting is a series of documents that consists of the following parts:

- Part 1: Guidelines on selection of lighting classes [Technical Report];
- Part 2: Performance requirements [present document];
- Part 3: Calculation of performance;
- Part 4: Methods of measuring lighting performance;
- Part 5: Energy performance indicators.


## B. 3 Terms and definitions

E - horizontal illuminance over a road area measured in lux (lx)
$\overline{\operatorname{EmIn}}$ - horizontal illuminance averaged over a road area measured in lux (lx).
Emin - lowest illuminance on a road area measured in lux (lx).
$\overline{\boldsymbol{E m a x}}$ - horizontal illuminance averaged over a road area measured in lux (lx).
Reference point R - The reference point of the lamp shall be the geometric centre of the light field

B.3.1 Derivation of parameter

The test condition in this annex is based on accident analysis. The illumination values refer to DIN EN 13201.
The main illumination situations are main roads in urban situations with velocity $30 \ldots 60 \mathrm{~km} / \mathrm{h}$, where main users are motorized vehicles and where bicycles and pedestrians are permitted.
The illuminance is based on class ME3. For ME3 comparative classes are available: C3 und S1. For Illuminance class S1 following values are defined in EN 13201:

Values for Class S1:
$\overline{E m i n}>15 l x$ AND Emin $>5 l x$
$\overline{\operatorname{Emax}}<1,5 * \overline{\operatorname{Emın}}$ AND $\overline{E m a x}<22,5 l x$
$\overline{\boldsymbol{E r e f}}$ - In order to reach a stable measurement setup, a reference value is defined as:
$\overline{\text { Eref }}=\frac{\overline{E \min }+\overline{E \max }}{2}=\frac{15 l x+22,5 l x}{2}=18,75 l x$

## B. 4 Light condition

There is a wide range of illuminance values in different situations. (see figure below).


## B.4.1 Background illuminance

The background illumination is an additive value to the streetlight illumination.
The position of the measurement of the background illumination shall be measured at the collision point. During measurement of background illumination all lamps and vehicle light shall be switched off.

Maximum of the background illumination on a test area during night shall be less than:

## IEB $<11 \mathbf{x}$


B.4.2 Illuminance at VUT path

The illuminance of VUT path ( $\overline{I V U T}$ ) is defined as an average of illuminance measurement points along the VUT path, trajectory BB. For CPNA-25, CPNA-75 and CPNCO the average illuminance shall be in a range of:
$\overline{I V U T}=\overline{\text { Eref }} \pm$ Tolerance $=19 l x \pm 3 l x$
$\overline{I V U T}=\frac{1}{11} \sum_{i=1}^{11} I$ VUTi; $\quad 16 l x<\overline{I V U T}<22 l x$
For CPFA, two additional lamps on the farside shall be switched on and the average illuminance shall be in a range of:

$$
\begin{array}{ll}
\overline{\text { IVUT }}=\overline{\text { Eref }} \pm \text { Tolerance } & =\mathbf{2 5 l x} \pm \mathbf{5 l x} \\
\overline{I V U T} & =\frac{1}{11} \sum_{i=1}^{11} I V U T i ;
\end{array} \quad 20 l x<\overline{I V U T}<30 l x .
$$



## B.4.3 Illuminance at EPT path

The illuminance along the EPT path, trajectory EE shall be at least $\mathrm{IEPT}_{\mathrm{i}}>$ Emin I EPT $\mathrm{T}_{\mathrm{i}}$ ranges from 1 to 6 in nearside scenarios (Figure B5), where street lamps 6 and 7 are switched off. $\mathrm{EPT}_{\mathrm{i}}$ ranges from 4 to 11 in farside scenarios (Figure B6).
I EPT $\mathbf{E P}_{\mathbf{i}} \mathbf{~ 5 1 x}$


Figure B.4.3: Illuminance EPT path - nearside scenarios


```
Axes
EE - Axis of centreline of pedestrian dummy
BB - Axis of centreline of Vehicle under Test
Distances
Dn - Lateral distance between the centre of the light field and the VUT path (nearside)
Df - Lateral distance between the centre of the light field and the VUT path (farside)
S - Distance between street lamps
Y
    Y4 \ldots. Y 10 = 1m
Points
IEPT
    i= 4 ... 11
```

Figure B.4.3: Illuminance EPT path - farside scenarios

## B.4.4 Measurement tolerances

All measurement tolerances shall be E : $\pm \mathbf{1 1 x}$

## B. 5 Test Equipment

B.5.1 General requirement

The chosen lamp setup must reflect real world conditions. It is not allowed to install separate lamps to reach the required conditions. For the night test, a LED lamp shall be used due to its overall advantages like homogeneous illumination, long-term stability, power consumption etc.
B.5.2 Glaring

The lamps shall not be tilted towards the SV path to avoid any glaring which could affect the sensor performance. Glaring of the sensor system shall not occur everywhere on the test area and especially not along the section of the vehicle path.
B.5.3 Constant illumination function

To reach constant test conditions during test and lifetime, the lamp shall have a constant illumination function.
B.5.4 Colour temperature

The colour temperature of the lamps shall be between $4500 \pm 1000 \mathrm{~K}$.
B.5.5 Mounting device

The lamps can be either installed stationary on a fixed pole, or on a mobile tripod. The mounting device must be designed to withstand wind speeds up to $20 \mathrm{~m} / \mathrm{s}$.
B.5.6 Free Space (F)

In the passenger side of the VUT test path it is not allowed to install any mounting device from the lamp.


The free space F between the VUT path and the mounting facility shall be $\mathrm{F} \geq \mathbf{4 m}$.

## B.5.7 Test setup

Four lamps in front of the pedestrian path and three lamps behind the pedestrian path are required (see figure below). That lamp configuration provides a homogeneous illumination of the test scenario according to real world situations.
The position of the EPT is between lamp 3 and 4 ( 6 and 7 for CPFA).
Lamps 3, 4, 6 and 7 must be the same model lamp.
Lamps 6 and 7 are only switched on for the farside scenario.


$$
\begin{aligned}
& \text { Axes } \\
& \text { EE - Axis of centreline of pedestrian dummy } \\
& \text { BB - Axis of centreline of Vehicle under Test } \\
& \text { Distances } \\
& \text { Dn - Lateral distance between the centre of the light field and the VUT path (nearside) } \\
& \text { Df - Lateral distance between the centre of the light field and the VUT path (farside) } \\
& \text { S - Distance between street lamps }
\end{aligned}
$$

Figure B8: CPNA Night-time setup


Figure B9: CPNCO Night-time setup


## Axes

EE - Axis of centreline of pedestrian dummy
$B B$ - Axis of centreline of Vehicle under Test

Distances
Dn - Lateral distance between the centre of the light field and the VUT path (nearside)
Df - Lateral distance between the centre of the light field and the VUT path (farside)
S - Distance between street lamps
Figure B10: CPFA Night-time setup

## B.5.8 EPT position

The EPT track EE shall be positioned between the street lamp 3 and 4 and passes the centreline of the EPT. Reference point for test setup is trajectory AA, which passes the pedestrian dummy H-point.


## B. 6 Example Test Equipment

As a reference and to demonstrate feasibility, the following sections provides example test equipment, test set-up and reference measurements that can be taken to ensure that the set-up will meet the requirements of this ANNEX.

Lamp type
Schuch, 48_LED (48 2403 ABX CL), or
Schuch, 47_LED (48 2403 ABX CL)

B.6.1 Requirement test setup adjustment

To be sure to reach requirement B 4.2 and B 4.3 the following parameters are allowed to be adjusted.

The distance of the lamp should be adjustable in order to reach the requested illumination values.

## $S: \mathbf{2 5 m} \pm \mathbf{0 , 5 m}$

The lateral distance between the centre of the LED-area and the vehicle path is adjustable in a range of
Dn: $\mathbf{4 , 0 m} \pm \mathbf{0 , 1 m} ;$ Df: $\mathbf{6 , 0 m} \pm \mathbf{0 , 1 m}$
The height of the lamp should be adjustable in order to reach the requested illumination values.
H: $\mathbf{5 m} \pm \mathbf{0 , 1 m}$

Angle against ground and pole.
$\alpha: 90^{\circ} \pm 0,5^{\circ}$
The tilt of the lamp is adjustable in three different positions. ( $0^{\circ}$ standard, $5^{\circ}, 10^{\circ}$ )

## T: $\mathbf{0}^{\circ}$ standard position

The inclination of road and test site surfaces is typically $\sim 2.5 \%$

$$
\gamma:<1,5^{\circ}
$$

To ensure that the centre lines L of the lamps are oriented at right angles to the street even under the above conditions the length of the control line C (for both nearside Cn and farside Cf) shall be verified. Approval for the two lamps adjacent to the pedestrian path is sufficient:
$C n=\sqrt{D n^{2}+H^{2}}=\sqrt{4 m^{2}+5 m^{2}}$
Cn: 6,4m $\pm 0,1 \mathrm{~m}$;
$C f=\sqrt{D f^{2}+H^{2}}=\sqrt{6 m^{2}+5 m^{2}}$
Cf: 7,8m $\pm \mathbf{0 , 1 m}$;


R - Reference point geometric centre of the light field
L - Centre line of the lamp (parallel to the pole)
D - Lateral distance between the centre of the light field and the VUT path
F - Free space between driving path of VUT and equipment
H - Height of lamp
C - Control line
$\tau$ - Tilt of lamp
$\alpha$ - Angle against ground and pole
$\gamma$ - Cross slope

## B.6.2 Longitudinal inclination of lamp

In order to get well balanced light distribution, it is necessary that the inclination of the lamp is in a range of:
$\boldsymbol{\beta 1 , 2 :} 90^{\circ} \pm 0.5^{\circ}$

$\beta_{1}$ - Inclination of lamp to ground
$\beta_{2}$ - Inclination of lamp to pole

## B.6.3 Orientation of lamp

In order to get well balanced light distribution, it is necessary that the rotation of the lamp in a range of: $\rho: 90^{\circ} \pm 0,1^{\circ}$


## Axes

BB - Axis of centreline of Vehicle under Test

## Angles

$\rho$-rotation of lamp
Distances
F - Free space between driving path of VUT and equipment
D - Lateral distance between the centre og the light field and the VUT path
Points
$R$ - Reference point geometric centre of the light field

## B.6.4 Example solutions

It is not allowed to install any mounting device within the free space. Different solutions are possible to reach the requirement as defined in B5.6.


```
Axes
BB - Axis of centreline of Vehicle under Test
Distances
F - Free space between driving path of VUT and equipment
D - Lateral distance between the centre og the light field and the VUT path
Points
R - Reference point geometric centre of the light field
```


## B.6.5 Example mounting devices

It is not allowed to install any mounting device within the free space. Different solutions are possible to reach the requirement as defined in B5.6.

Towerlight TF5.5
http://www.towerlight.de/produkt/tf-5-5-7m/
(Date 2017-05-15)

configuration tripod

configuration cement pole

## B. 7 Measurement

To ensure, that the parameter defined in B4.1, B4.2 and B4.3 are in line with test setup, the parameter must be verified and documented.
B.7.1 Measurement setting

To measure the illumination, a calibrated luxmeter must be set on ground in a right angle to the street.
P: < 0,2m


$$
\begin{aligned}
& E_{h}-\text { Horizontal illumination } \\
& R-\text { Reference point geometric centre of light field } \\
& P \text { - Maximal height over ground } \\
& X \text { - Position } X \\
& \alpha \text { - Angle against ground } \\
& \gamma-\text { Cross slope }
\end{aligned}
$$

## B.7.2 Example measurement grid

To ensure, that the parameter defined in B4.1, B4.2 and B4.3 are in line with test setup, the parameter must be verified and documented.
For I EPT5, I VUT6, I EB the position for measurement is:
$X=12,5 \mathrm{~m}, \mathrm{Y}=4,0 \mathrm{~m}$.
The other values see figure below.

B.7.3 Example measurement tools

To measure the illuminance values, a calibrated luxmeter shall be used. The tolerance shall be:
Maximal error tolerance < 5\%.

## Luxmeter LMT B 360

http://www.lmt-berlin.de/de/b360.html (Date 2017-05-15)


## Luxmeter Konika T-10A

https://www.konicaminolta.eu/de/messgeraete/produkte/licht-messtechnik/luxmeter/t10a/einfuehrung.html (Date 2017-05-15)

figure: Luxmeter Konika T-10A
B.7.4 Measurement documentation

The following values shall be measured and documented before and after a complete test series.

- Background illuminance $I_{\text {Eb }}$ (B.4.1)

With all lamps and vehicle lights switched OFF, measure and record Ieb before and after a full test series.

- Illuminance at VUT, EPT path (B.4.2 \& B.4.3)

With all lamps ON and vehicle lights OFF, measure and record the illuminance at VUT and EPT path.

## ANNEX C BRAKE APPLICATION PROCEDURE

The braking input characterisation test determines the brake pedal displacement and force necessary to achieve a vehicle deceleration typical of that produced by a typical real-world driver in emergency situations.

## C. 1 Definitions

$\mathbf{T}_{\text {brake }}$ - The point in time where the brake pedal displacement exceeds 5 mm .
$\mathbf{T}_{-6 \mathrm{~m} / \mathrm{s}_{2}}$ - The point in time is defined as the first data point where filtered, zeroed and corrected longitudinal acceleration data is less than $-6 \mathrm{~m} / \mathrm{s}^{2}$.
$\mathbf{T}_{-2 \mathrm{~m} / \mathrm{s} 2}, \mathbf{T}_{-4 \mathrm{~m} / \mathrm{s} 2}$ - similar to $\mathbf{T}_{-6 \mathrm{~m} / \mathrm{s} 2}$.

## C. 2 Measurements

Measurements and filters to be applied as described in Chapter 4 of this protocol.

## C. 3 Brake Characterization Procedure

First perform the brake and tyre conditioning tests as described in 7.1.2 and 7.1.3. The brake input characterisation tests shall be undertaken within 10 minutes after conditioning the brakes and tyres.

## C.3.1 Brake Displacement Characterisation Tests

- Push the brake pedal through the full extent of travel and release.
- Accelerate the VUT to a speed in excess of $85 \mathrm{~km} / \mathrm{h}$. Vehicles with an automatic transmission will be driven in D. For vehicles with a manual transmission select the highest gear where the RPM will be at least 1500 at the $85 \mathrm{~km} / \mathrm{h}$.
- Release the accelerator and allow the vehicle to coast. At a speed of $80 \pm 1.0 \mathrm{~km} / \mathrm{h}$ initiate a ramp braking input with a pedal application rate of $20 \pm 5 \mathrm{~mm} / \mathrm{s}$ and apply the brake until a longitudinal acceleration of $-7 \mathrm{~m} / \mathrm{s}^{2}$ is achieved. For manual transmission vehicles, press the clutch as soon as the RPM drops below 1500. The test ends when a longitudinal acceleration of $-7 \mathrm{~m} / \mathrm{s}^{2}$ is achieved.
- Measure the pedal displacement and applied force normal to the direction of travel of the initial stroke of the brake pedal, or as close as possible to normal as can be repeatedly achieved.
C.3.1.1 Perform three consecutive test runs. A minimum time of 90 seconds and a maximum time of 10 minutes shall be allowed between consecutive tests. If the maximum time of 10 minutes is exceeded, perform three brake stops from $72 \mathrm{~km} / \mathrm{h}$ at approximately 0.3 g .
- Using second order curve fit and the least squares method between T-2 $\mathrm{m} / \mathrm{s}^{2}, \mathrm{~T}-6 \mathrm{~m} / \mathrm{s}^{2}$, calculate the pedal travel value corresponding to a longitudinal acceleration of $-4 \mathrm{~m} / \mathrm{s}^{2}$
(=D4, unit is m ). Use data of at least three valid test runs for the curve fitting.
- This brake pedal displacement is referred to as D4 in the next chapters.
- Using second order curve fit and the least squares method between T-2 $\mathrm{m} / \mathrm{s}^{2}, \mathrm{~T}-6 \mathrm{~m} / \mathrm{s}^{2}$, calculate the pedal force value corresponding to a longitudinal acceleration of $-4 \mathrm{~m} / \mathrm{s}^{2}(=\mathrm{F} 4$, unit is N ). Use data of at least three valid test runs for the curve fitting.
- This brake pedal force is referred to as F4 in the next chapters.


## C.3.2 Brake Force Confirmation and Iteration Procedure

- Accelerate the VUT to a speed of $80+1 \mathrm{~km} / \mathrm{h}$. Vehicles with an automatic transmission will be driven in D. For vehicles with a manual transmission select the highest gear where the RPM will be at least 1500 at the $80 \mathrm{~km} / \mathrm{h}$.
- Apply the brake force profile as specified in C.4, triggering the input manually rather than in response to the FCW. Determine the mean acceleration achieved during the window from TBRAKE +1 s TBRAKE +3 s . If a mean acceleration outside the range of $-4-0.5 \mathrm{~m} / \mathrm{s}^{2}$ results, apply the following method to ratio the pedal force applied. F4new $=$ F4original $*(-4 /$ mean acceleration $)$, i.e. if F4original results in a mean acceleration of $-5 \mathrm{~m} / \mathrm{s}^{2}$, F4new $=$ F4original $*-4 /-5$
- Repeat the brake force profile with this newly calculated F4, determine the mean acceleration achieved and repeat the method as necessary until a mean acceleration within the range of $-4-0.5 \mathrm{~m} / \mathrm{s}^{2}$ is achieved.
C.3.2.1 Three valid pedal force characteristic tests (with the acceleration level being in the range as specified) are required. A minimum time of 90 seconds and a maximum time of 10 minutes shall be allowed between consecutive tests. If the maximum time of 10 minutes is exceeded, perform three brake stops from $72 \mathrm{~km} / \mathrm{h}$ at approximately 0.3 g .
- before restarting the brake pedal force characterisation tests. This brake pedal force is referred as F4 in the next chapters.


## C. $4 \quad$ Brake Application Profile

- Detect $\mathrm{T}_{\mathrm{FCw}}$ during the experiment in real-time.
- Release the accelerator at TFCW +1 s .
- Perform displacement control for the brake pedal, starting at TFCW +1.2 s with a gradient of the lesser of $5 \times \mathrm{D} 4$ or $400 \mathrm{~mm} / \mathrm{s}$ (meaning the gradient to reach pedal position D4 within 200 ms , but capped to a maximum application rate of $400 \mathrm{~mm} / \mathrm{s}$ ).
- Monitor brake force during displacement control and use second-order filtering with a cutoff frequency between 20 and 100 Hz (online) as appropriate.
- Switch to force control, maintaining the force level, with a desired value of F4 when
i. the value D4 as defined in C.3.1.1 is exceeded for the first time,
ii. the force F4 as defined in C.3.1.1 is exceeded for the first time, whichever is reached first.
- The point in time where position control is switched to force control is noted as $\mathrm{T}_{\mathrm{s}}$ itch.
- Maintain the force within boundaries of $\mathrm{F} 4 \pm 25 \% \mathrm{~F} 4$. A stable force level should be achieved within a period of 200 ms maximum after the start of force control. Additional disturbances of the force over $\pm 25 \% \mathrm{~F} 4$ due to further AEB interventions are allowed, as long as they have a duration of less than 200 ms .
- The average value of the force between TFCW +1.4 s and the end of the test should be in the range of $\mathrm{F} 4 \pm 10 \mathrm{~N}$.


## ANNEX D Emergency Steering Support

The ESS is evaluated at the Euro NCAP lab with input from the OEM to ensure proper triggering of the system. The recommended testing procedure can be found in the Technical Bulletin TB037.

